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Abstract

Tradeoffs between Information, Tractability, and Fairness in Large Matching Markets

Aapeli Vuorinen

Matching theory is one of the cornerstones of modern algorithmic market design,

and is therefore heavily studied by communities in operations research, economics, and

theoretical computer science. Such models arise whenever a central planner is tasked

with pairing together agents of two distinct types but cannot use money to clear the mar-

ket; and where each agent has idiosyncratic preferences over the agents of the other type.

Natural applications of matching markets are found in the allocation of indivisible goods

such as school assignment, medical residency matching, and the allocation of government

subsidized housing.

Matching theory and in particular stable matching has seen significant research effort

since seminal work by Gale and Shapley algorithmically established the existence of a

condition called stability, which guarantees that a matching can be found with the prop-

erty that no participant is incentivized to deviate from it. Many centralized mechanisms

for two-sided matching markets have since been shown to enjoy strong theoretical prop-

erties, which ipso facto, justifies their use in the real world.

However, due to practical constraints—commonly due to the size and complexity of

the market at hand—real world applications often resort to simplified models that do

not faithfully capture reality. These simplifications lead to the central planner operating

without perfect information about the participants or their preferences.



In this thesis, we present three interconnected branches of research exploring tradeoffs

between information, tractability, and fairness in large matching markets. We investigate

how various limitations on information acquisition and exchange affect the mechanisms,

outcomes, and fairness of matching markets.

We are motivated by the matching mechanism that assigns students to public schools

in New York City. The unified school district—which encompasses all five boroughs—

has since 2003 employed the theory of stable matching to perform this assignment, with

students as one side of the market and schools as the other. Consisting of over 1.1 million

students, the size and diversity of the market presents a massively interesting real-world

object of study.

In the first chapter, we investigate a model where students are restricted in the length

of preference lists that they may submit to the market operator. In particular, we study

such random instances of the Serial Dictatorship mechanism where students choose 𝑑

schools uniformly at random from 𝑛 schools as their preference list, and each school

has exactly one seat. Our main result is that if the students primarily care about being

matched to any school of their list (as opposed to ending up unmatched), then all students

in position 𝑖 ≤ 𝑛 will prefer markets with longer lists when 𝑛 is large enough, whereas

students after some cutoff 𝑐 > 𝑛 (that quickly approaches 𝑛 as the list length grows) prefer

markets with shorter lists. This suggests that markets that are well-approximated by our

hypothesis and where the demand of schools does not exceed supply, should be designed

with preference lists as long as reasonable.

In the second chapter, we study the impact of systemic bias in school matching by

investigating the admissions process to the eight elite public schools (called the Special-

ized High Schools) in New York City. These schools admit students solely based on

their score on a standardized test, but we observe a clear distributional shift in the test

scores of disadvantaged students (as defined by the city). To study this shift, we present

a stylized model where all students have a true potential (representing their innate ability)



sampled independently from the same distribution. While non-disadvantaged students

always perform at their true potential, disadvantaged students appear at a perceived po-

tential strictly below their innate ability due to some systemic bias. We investigate both

theoretically and empirically the impact of such bias on the admissions process, then turn

to studying interventions to counter it. These interventions are in the form of vouchers

targeted at certain disadvantaged students, which we assume give that student the re-

sources they need to perform at their true potential. We measure aggregate mistreatment

under various metrics, first investigating optimal deterministic voucher distribution, and

then turning to randomized voucher distribution. We additionally present extensive nu-

merical experiments both on a real dataset from New York, as well as on simulated data.

We then confirm that our results hold under various relaxations to our stylized model,

including moderate levels of model misspecification. Our key takeaway is that resources

should be targeted at slightly above average performers instead of the absolute top per-

formers.

In the third chapter, we take the schools’ side. Currently the city allows schools to

only specify their preferences using a strict preference list over students. While this leads

to a simple algorithm, stable matching models may be extended to allow schools to com-

municate much more rich preference via choice functions. We discuss the impact of using

general choice functions in the offline model of stable matching, establishing that general

path-independent and quota-filling choice functions are too large a class to be used in

this setting. We propose the class of Kuhn choice functions, that arise as maximum-weight

matchings in an auxiliary bipartite graph, as a tractable yet rich subclass. We show that

such choice functions are amenable to use in the offline model and possess many desir-

able properties. We further discuss the hierarchy of choice and approximability of vari-

ous classes of choice functions. Theoretical proofs are complemented by computational

results and a discussion on various practical aspects of using choice functions in stable

matching.
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Introduction

Markets arise whenever supply is aggregated together with demand. They come

in many flavors: on couch surfing platforms hosts put up postings expressing interest in

welcoming surfers from around the world, in school choice mechanisms cities make seats

in public schools available to students (and their parents) to apply to through unified

application processes, and in financial markets participants form exchanges to trade stan-

dardized securities among themselves.

This thesis studies two-sided matching markets. A market is two-sided when supply and

demand are of two differentiated types: in the couch surfing example the two sides are

hosts (who have time to host and a room or couch to spare) and surfers (who are visiting

a city and looking to meet and stay with a local). Similarly in the case of school choice

markets, the students are fundamentally different from the schools that they are matched

to. This rules out markets such as the market of roommates where there is only one type of

participant simultaneously representing both supply and demand. Matching markets are

those markets where we look for a matching—or a pairing—between agents of the two

sides, and the outcome is decided by the heterogeneous preferences of agents rather than

by prices; such as pairing up hosts with surfers (where compatibility is key), or assigning

students to schools (where students have preferences and schools are selective). This rules

out markets such as those found in the financial world where buyers and sellers have no

preference over whom they wish to transact with.

Agents from both sides participate in such markets in exchange for a guarantee that

1



the resultant matching will respect their preferences by not matching them to an undesir-

able partner. This gives rise to the concept of stability. In the case where each agent can

be matched to at most one other partner, stability states that there be no pair of agents

of opposing types such that they both prefer each other to whomever they were matched

with. Such a pair, if it exists, is called a blocking pair. Agents forming a blocking pair are

incentivized to deviate from the proposed solution by forming their own exogenous pair-

ing together, thereby discarding their assigned partner. A market that contains blocking

pairs would therefore be inherently unstable as agents could not trust that their assigned

partner would honor the matching, which could ultimately lead to participants abandon-

ing the market entirely. Stability—the absence of such blocking pairs—is therefore the

fundamental equilibrium concept used within the field.

Matching theory and in particular stable matching has seen significant research effort

since the seminal work by Gale and Shapley [1] which introduced this concept of stabil-

ity in the marriage model and algorithmically established the existence of stable solutions

via their Deferred Acceptance procedure. Many centralized mechanisms for two-sided

matching markets have since been shown to enjoy strong theoretical properties, which

ipso facto justifies their use in the real world.

However, due to practical constraints—commonly due to the size and complexity of

the market at hand—real world applications often resort to simplified models. These

simplifications lead to the central planner operating without perfect information about

the participants or their preferences.

In this thesis, we present three interconnected branches of research exploring trade-

offs between information, tractability, and fairness within large matching markets. We

investigate how various limitations on information acquisition and exchange affect the

mechanisms, outcomes, and fairness of matching markets.

Our models are by and large motivated by the New York City public school choice

program. The unified school district, which encompasses all five boroughs, has since

2



2003 employed the theory of stable matching to perform this assignment [2, 3]. Consist-

ing of over 1.1 million students, the size and diversity of the market presents a massively

interesting real-world object of study. Students form one side of the market, each compil-

ing and submitting a ranked list of schools they wish to attend. Schools, each with some

number of seats, form the other side of the market, ranking the students in the order of

whom they wish to admit.

In Chapter 1, we investigate the very common constraint where the length of pref-

erence lists is limited. Such constraints arise in many large real-world markets, where

agents cannot be expected to produce a ranking of all options on the other side. In par-

ticular, we study such random instances of the Serial Dictatorship mechanism where stu-

dents choose 𝑑 schools uniformly at random from 𝑛 schools as their preference list, and

each school has exactly one seat.

Our main results shows that if the students primarily care about being matched to any

school of their list (as opposed to ending up unmatched), then all students in position

𝑖 ≤ 𝑛 will prefer markets with longer lists when 𝑛 is large enough, whereas students after

some cutoff 𝑐 > 𝑛 (that quickly approaches 𝑛 as the list length grows) prefer markets with

shorter lists. Schools on the other hand will always prefer longer lists in our model. We

further investigate the impact of 𝑑 on the rank of the school that a student gets matched

to. We conjecture that our result holds when each school has 𝑞 > 1 seats, and perform

numerical experiments to test this conjecture. We also show empirically that our results

continue to hold in many cases where students sample schools independently at random

but not necessarily uniformly.

Our work suggests that markets that are well-approximated by our hypotheses and

where the demand of schools does not exceed supply should be designed with preference

lists as long as reasonable, since longer lists would favor all agents.

In Chapter 2, we study the impact of systemic bias in school matching. Our model is

motivated by the admissions process to the eight elite public schools in New York City

3



called the Specialized High Schools, which admit students solely based on their score

on the Specialized High School Admissions Test (SHSAT). The Department of Education

(DOE) deems some students disadvantaged based largely on socio-economic factors. We

observe a significant discrepancy between these two groups, in the form of a distribu-

tional shift in student test scores. In particular, we find that the distribution of perfor-

mance between non-disadvantaged and disadvantaged students match closely under a

constant multiplicative or additive shift in scores.

This motivates our stylized model of bias, where we posit that disadvantaged stu-

dents and non-disadvantaged students alike have some true potential (representing their

innate ability) sampled independently from the same distribution. However, due to head-

winds in their educational experience, those students that are disadvantaged perform at

a perceived potential that is lower than their true potential; whereas the non-disadvantaged

students are always perceived at their true potential. We assume that students have a

shared preference over the top schools, and based on the DOE data, we study in detail

the case where potentials follow the Pareto law.

We investigate both theoretically and empirically the impact of such differences in per-

ceived potential, then turn to interventions to counter it. These interventions are in the

form of vouchers targeted at certain disadvantaged students. We assume that such vouch-

ers (in the form of supplemental instruction, additional test prep, or even scholarships)

give a disadvantaged student the support and resources they need to perform at their true

potential. We define the mistreatment of a student as the displacement they experience

due to the presence of bias, then define two opposing metrics of aggregate welfare—

the maximum mistreatment metric and the positive area under the mistreatment curve

(PAUC)—corresponding to the 𝐿∞ and 𝐿1 norms of mistreatment, respectively.

We analytically identify optimal deterministic debiasing sets under both metrics, but

observe that these fail to be incentive compatible and individually fair. Motivated by

this, we study randomized policies for voucher distribution, and produce such a policy

4



that is individually fair, incentive compatible and—by targeting average disadvantaged

students—can improve aggregate welfare more than any deterministic policy.

We additionally present extensive numerical experiments both on a real dataset from

New York for the 2016–17 academic year, as well as on simulated data, which confirm

that our results hold even when some of our stylized assumptions do not hold, and under

various levels of model misspecification.

The key takeaway from our work is that interventions should be targeted at slightly

above average performers instead of the absolute top performers. This is in contrast to

common scholarship distribution schemes that tend to award extra resources to only the

very best students.

In Chapter 3, we take the schools’ side, investigating the impact on matching when

schools are not able to communicate their complete preferences to the central planner.

Many school districts, such as the one in New York, only allow schools to express their

preference over students via a ranked list. This is in contrast to the increasing desire of

schools to assemble classes of balanced students from diverse backgrounds to facilitate

learning; and a body of theoretical work that has moved to studying choice functions, ob-

jects that allow schools much greater ability in expressing their preferences.

We show that letting schools express their preference via arbitrary choice functions is

practically untenable in the offline model adopted in most markets. This motivates our pro-

posal for an elegant subclass called Kuhn choice functions that arise as maximum-weight

matchings in an auxiliary bipartite graph. We show that such choice functions have

many desirable properties, such as being representable in polynomial size, which makes

them an appropriate choice for the offline model. We then turn to questions of modeling

and recognition, discussing the gaps in what preference can be represented with various

classes of choice functions, and discussing the problem of recognizing which class a par-

ticular choice function belongs in. We present results on approximation of simpler choice

functions with more expressive ones, establishing a hierarchy of choice functions. Our
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theoretical results are complemented by numerical computations counting both Kuhn

and non-Kuhn choice functions over small cohorts.

We close the chapter by arguing that markets such as the New York City public school

market should adopt the more expressive class of preference systems captured by Kuhn

choice functions, as it can be easily adopted within the current matching mechanism

while yielding significant gains in ability of schools to express rich preference.
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Chapter 1: Longer Lists Yield Better Matchings

Joint work with Yuri Faenza.

1.1 Introduction

One of the central objectives of theoretical research in matching markets is to design

mechanisms such that the mechanisms and their outcomes provably satisfy desirable

properties. Depending on the specific market, the focus may be on concepts such as

strategy-proofness, one- or two-sided optimality, or equilibria. These and other proper-

ties are often viewed as justifications for applying such mechanisms in practice, under the

expectation that the valuable theoretical features will persist in the real world. In many

applications, however, the assumptions that are necessary for such properties to hold

may not be satisfied. For example, one can compute a stable assignment efficiently in a

static two-sided market, but in the very common real-world application arising in public

school allocation, a substantial number of agents often enter or leave the market after the

first assignment has been decided (see for example [4]). The goal of the central planner

therefore becomes less well-defined and, depending on the mathematical formalization,

may lead to computationally hard problems (see for example [5, 6, 7, 8]).

In this chapter, we focus on one of the main restrictions encountered in real-world

markets: imposing a limit on the maximum length of preference lists of agents. Such

limits are common in school markets: while Gale and Shapley’s Deferred Acceptance

algorithm [1] assumes that students are allowed to list all schools they deem acceptable

in their preference list, education departments traditionally impose a strict maximum

limit on the number of schools an applicant may list1. This restriction is motivated by
1These include programs in Spain and Hungary [9], Australia [10], as well as some cities in the United
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practical concerns such as the additional burden that acquiring more information poses

to schools and students alike. However, the effect of restricting the length of preference

lists is significant on the properties of the mechanism and of its outcome. For instance,

while the original Deferred Acceptance mechanism is strategy-proof for the proposing

side, its implementation with bounded-size lists leaves room for strategic behavior of

students. This is not merely a theoretical concern, but has practical implications [9] which

are well known to central planners. For instance, until the school year 2024/2025, the

Department of Education of New York City limited2 the number of schools in student

preference lists to 12 and suggested that the applicants be strategic by reserving some of

the slots for “safe schools” (schools that are less desirable or where the student has high

priority, and as a result, a high probability of being accepted) [11].

When deciding the length of preference lists in a matching market, it is therefore es-

sential to carefully balance practical concerns with the potential efficiency losses that can

result from limiting information exchange. A correct estimation of the efficiency loss in-

duced by short(er) lists can therefore guide a market designer in striking the right trade-

off.

1.1.1 Our Contributions

In this chapter, we focus on the impact that the length of preference lists has on the

quality of the output matching in the Serial Dictatorship mechanism for two-sided match-

ing markets. In our theoretical model, we assume that the proposing side (students) have

preference lists drawn uniformly at random and that the disposing side (schools) have

only one seat (we later discuss how these assumptions can be relaxed in our computa-

tional experiments).

The concept of “quality of a matching” can be defined in multiple ways; we mostly

States.
2This rule was changed for the school year 2025/2026, and applicants can now list as many schools as

they want.
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focus on the probability that a student will be matched to any school of their preference

list as opposed to remaining unmatched. This is justified by the fact that if a student

cannot be matched to any school of their preference list, they completely lose control of

the school they are matched to (in many markets, such students are assigned a remaining

seat arbitrarily at the whim of the central planner). This seems by far the worse outcome

for a student. We moreover study the probability that a student is matched to their top 𝑘

choices, a popular measure of quality of a matching3.

1. Comparative analysis of balanced markets. In our model, the probability 𝑝𝑖 that a

student 𝑖 is matched to any school in their preference list is determined by two opposite

effects. On one hand, longer preference lists mean that the student at hand has a larger list

of acceptable schools, causing an higher 𝑝𝑖. On the other hand, the longer the preference

lists, the more schools will have been matched to students with priority higher than 𝑖,

decreasing 𝑝𝑖. Our main result is that under the Serial Dictatorship mechanism, when

the number of schools 𝑛 is large enough, the former effect dominates for all students

in positions 𝑖 ≤ 𝑛: that is, 𝑝𝑖 increases with the length of lists. This is our Theorem 1.

In particular, if the demand of schools does not exceed supply, all students will prefer

longer lists. It is not hard to see that in such a market, all schools are matched with higher

probability when preference lists are longer (see Lemma 2). Therefore our results suggest

that markets that are well-approximated by these hypotheses should be designed with

preference lists as long as reasonable, since longer lists favor all participating agents.

2. Comparative analysis of general markets. Interestingly, it is not true in general that

longer lists will result in a higher 𝑝𝑖 for every student. Indeed, for 𝑛 large enough, all

students in position 𝑖 ≥ ⌈1.22𝑛⌉ will be matched with a higher probability when the length

of preference lists is 1 (students randomly choose one school to apply to), as opposed

to when the length of preference lists is 2. This case is discussed in Section 1.2.3 and

3For instance, the National Resident Matching Program, while using the Deferred Acceptance algorithm,
explicitly reports the number of applicants matched to their first choice [12], while the Boston Mechanism
directly aims at maximizing the number of students matched to their first choice.
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Figure 1.3. More generally, for all 𝑑 < ℓ and 𝑛 large enough, there exists a cutoff 𝑐(𝑑) >

1, such that every student in position 𝑖 > 𝑛 · 𝑐(𝑑) is matched with higher probability

when preference lists are of length 𝑑, as opposed to when preference lists are of length ℓ;

furthermore, as 𝑑 → ∞, 𝑐(𝑑) → 1. This is our Theorem 3.

3. Absolute bounds on the probability of being matched. While the previous results

compare the probabilities of a given student getting matched to any school in their list

between markets with different list length, they do not give us any information on the

absolute probability. We show in Theorem 4 that as the length of preference lists increases,

the probability that the student in position 𝑖 = 𝑛 is matched (recall that 𝑛 is the number

of schools) quickly approaches 1/2. This is therefore also a lower bound (resp., an upper

bound) to the probability of a student 𝑖 ≤ 𝑛 (resp., 𝑖 ≥ 𝑛) being matched. In Lemma 5, we

further prove bounds on the probability that a student in position 𝑖 ≤ 𝑛 gets matched to

one of their top-𝑘 choices as a function of the length of the market.

4. Numerical results. In Section 1.4, we numerically study two extensions of the model.

We first focus on the case when the preference lists are not sampled uniformly at ran-

dom, but rather, schools are sampled i.i.d. from one of 5 distributions that place different

weights on different schools. With the exception of a “degenerate” distribution, numeri-

cal experiments confirm our main result even when the uniformity assumption is relaxed:

that every student in position 𝑖 ≤ 𝑛 will be matched with higher probability when lists are

longer. We then focus on the case when schools have 𝑞 > 1 available seats each, and con-

firm via simulations, that in this case too, students in balanced markets appear to always

prefer longer lists.

1.1.2 Organization of the Chapter

We conclude this introductory section with further pointers to the literature. Sec-

tion 1.2 is devoted to introducing the main models and ideas, and formally stating many

results (including those discussed above) without proofs. In particular, in Section 1.2.1,
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we introduce the main (discrete) model that we investigate in this chapter. To analyze its

properties for 𝑛 large enough, it will be useful to consider a continuous model that can

be interpreted as a limit of the discrete model. This continuous model is introduced in

Section 1.2.2. In Section 1.2.3 we state the connections between the two models, as well as

some relevant properties of the continuous model. We moreover discuss some implica-

tions of our results for Random Serial Dictatorship and extend our models to the case of

schools having multiple seats in Section 1.2.4. Last, we discuss the relevance of our model

and our hypothesis in Section 1.2.5.

Proofs of results stated in Section 1.2 appear in Section 1.3: we start with a limit the-

orem rigorously establishing the connection between the continuous and the discrete

models (Section 1.3.1), followed by proofs of properties of the continuous market (Sec-

tion 1.3.2). Results from Section 1.3.1 and Section 1.3.2 will allow to deduce properties of

the discrete market (Section 1.3.3 and Section 1.3.4).

Numerical experiments testing the validity of our theoretical results when some as-

sumptions are relaxed appear in Section 1.4. We conclude in Section 1.5.

1.1.3 Related Literature

Random models for matching markets have a long and rich history. The model that

is closest to ours is the one by [13], where the authors consider random preference lists

and assume that one of the two sides has preference lists of bounded length, providing an

investigation of the model for large markets. In particular, [13] show that with high prob-

ability and market size large enough, the core (i.e., the set of stable matchings) has small

size. [14] study a similar model, investigating the change in the quality of the matchings

in the core as a function of the preference list length. Similar questions have also been

answered in the case when preference lists are complete and markets are balanced [15,

16] or unbalanced [17, 18].

The effect of short lists on the behavior of agents and on the quality of the output
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matching has been the subject of experimental studies [10, 19, 9]. While specifics differ,

they all share the common message that a loss of efficiency is experienced when agents

are asked to report preference lists of bounded length, as opposed to preference lists of

arbitrary length.

Many theoretical studies have been devoted to Serial Dictatorship and Random Serial

Dictatorship, with goals different from ours—see, for instance, [20, 21, 22, 5, 23] and the

references within the survey article [24].

To investigate our discrete model, we introduce a continuous model that can be thought

of as a limit of the former. Continuous or semi-continuous models for two-sided markets

have recently received quite some attention, since they often allow for tighter analysis,

see, e.g., [25, 26, 27]. In particular, the work in [26] which builds on earlier work in [28]

is closely aligned in its methods with our work. They similarly introduce a description

of the limit of a discrete market via a solution to an initial value problem; then utilize a

technical argument similar4 to our Theorem 6 to show convergence of certain quantities

relating to that market. Their differential equation is very general and allows for arbi-

trary distributions and varying lengths of preferences across students. In contrast, our

main technical contribution is to carefully construct an initial value problem for our spe-

cific case that produces a simple interpretation connected to the preference of students

and can be readily analyzed to yield insights for the original discrete model. We see our

comprehensive technical analysis of the resulting differential equations that yields an an-

swer to an interesting and practical question as one of our key contributions.

The outcome of the Serial Dictatorship mechanism in our model can also be under-

stood as the application of a randomized version of the greedy algorithm on an online

bipartite matching problem where, as usual, nodes from one side of the graph are given,

while the others arrive one at the time, have degree exactly 𝑑, and are matched to one

4Indeed, the pointwise convergence in probability of our limit is a corollary of their work. We provide a
simpler proof for a slightly stronger result (uniformly and pathwise) via an application of a functional law
of large numbers.
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of their currently unmatched neighbors uniformly at random (or discarded if no such

neighbor exists). Starting from the seminal work by [29], many versions of online match-

ing problems in bipartite graphs have been studied (see [30, 31] for recent surveys). To the

best of our knowledge, such models mostly focus on the competitive ratio of global objec-

tive functions (such as the number of matches or some profit or cost function associated

to the matching), while our node-by-node analysis of the probability of being matched

appears to be new.

1.1.4 Notation

We write N = {1, 2, 3, . . . } and, for 𝑘 ∈ N, [𝑘] = {1, 2, . . . , 𝑘}. We use 𝑛 ∈ N for the num-

ber of schools, 𝑑 ∈ N and ℓ ∈ N for lengths of preference lists, and 𝑚 ∈ N as the number

of students (in cases where we do not assume an infinite list of students). Superscripts

denote properties that are fixed for the market (except in the continuous realm where we

place the 𝑑 of 𝑥𝑑 (𝑡) in the subscript for convenience), and subscripts are used for running

indices. We use 𝑖 ∈ N for students, 𝑗 ∈ [𝑛] for schools. Random variables are denoted by

uppercase letters.

1.2 Models and Results

1.2.1 A Discrete Random Market Model

Model description. Consider a random market consisting of 𝑛 ∈ N schools each with

exactly one seat, and infinitely many students indexed by 𝑖 = 1, 2, 3, . . . . Each student is

endowed with a strict preference list, consisting of 𝑑 ≤ 𝑛 schools, chosen independently

and uniformly at random from the set of 𝑛 schools. We call 𝑑 the preference list length, and

it is a central quantity of interest in this chapter. If 𝑎 occurs before 𝑏 in this preference list,

the student strictly prefers being matched to 𝑎 rather than 𝑏. If a school 𝑐 does not appear

in a student’s preference list, the student finds this school unacceptable and prefers re-

maining unmatched to being matched to that school. A school that appears in a student’s
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preference list is acceptable to that student.

Students are matched to schools via a Serial Dictatorship mechanism as follows. Stu-

dents are listed in the order they are indexed; and each student in their turn picks their

most preferred school that has an available seat. If a student finds none of the remaining

schools acceptable, then that student goes unmatched. For a student 𝑖 ∈ [𝑚], we denote by

𝐾
𝑛,𝑑
𝑖

the random variable denoting the position of the school they get matched to within

their preference list, setting 𝐾𝑛,𝑑
𝑖

= ∞ if the student is unmatched (so 𝐾𝑛,𝑑
𝑖

∈ {∞, 1, . . . , 𝑑}).

We define the random vector K = {𝐾𝑛,𝑑1 , 𝐾
𝑛,𝑑

2 , 𝐾
𝑛,𝑑

3 , . . . } as the realization of one run of the

mechanism.

A student 𝑖 wishes to minimize 𝐾𝑛,𝑑
𝑖

. That is, they want to be ranked to the most

preferred school in their list. On the other hand, not getting matched at all (𝐾𝑛,𝑑
𝑖

= ∞)

is by far worse than getting matched to a school that the student finds acceptable but

ranks lower. Define 𝑀𝑛,𝑑
𝑖

= 1{𝐾𝑛,𝑑
𝑖
<∞} to be the indicator random variable for the event

that student 𝑖 gets matched at all. The probability that they get matched to any school in

their preference list is then P(𝑀𝑛,𝑑
𝑖

= 1).

For a given market with a fixed number of schools, only 𝑑 is chosen by the central

planner. It is therefore natural to ask what impact varying 𝑑 has on the distributional

properties of K, and on the distribution of individual students’ ranks (i.e. 𝐾𝑛,𝑑
𝑖

), as well as

their probabilities of getting matched to any school, P(𝑀𝑛,𝑑
𝑖

= 1).

Main results. As our main result5, we show that for a number 𝑛 of schools large enough,

every student in position 𝑖 ≤ 𝑛 will be matched to a school with higher probability in

markets with longer lists. The formal statement is as follows.

Theorem 1. Let 𝑑, ℓ ∈ N with ℓ > 𝑑. For every 𝑛 large enough and 𝑖 ≤ 𝑛, we have

P
(
𝑀
𝑛,ℓ
𝑖

= 1
)
> P

(
𝑀
𝑛,𝑑
𝑖

= 1
)
. (1.1)

5All proofs of the results from this subsection appear in Section 1.3.3 and Section 1.3.4.
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As we show in the following lemma, the probability of being matched increases with

the length of preference lists for each school. For a school 𝑗 ∈ [𝑛], define 𝐻𝑛,𝑑
𝑗

(𝑖) to be the

indicator random variable for the event that school 𝑗 gets matched to some student just

before student 𝑖 has had their turn. Then the following holds.

Lemma 2. Let 𝑑, ℓ, 𝑛 ∈ N with 𝑑 ≤ ℓ ≤ 𝑛. For every 𝑗 ∈ [𝑛] and every 𝑖 = 1, 2, . . . , we have:

P
(
𝐻
𝑛,ℓ
𝑗
(𝑖) = 1

)
≥ P

(
𝐻
𝑛,𝑑
𝑗

(𝑖) = 1
)
.

Theorem 1 and Lemma 2 imply that if the number of students does not exceed the

number of schools, then for 𝑛 large enough, all agents will be matched with higher prob-

ability in the market where preference lists are longer. Interestingly, Theorem 1 does not

necessarily hold for 𝑖 larger than 𝑛: as we discuss in Section 1.2.3, for any 𝑛 large enough,

students in position 𝑖 = ⌈1.22𝑛⌉ and beyond have a higher probability of being matched

when preference lists are of length 1 as opposed to length 2. A similar phenomenon hap-

pens also for longer preference lists, as formalized by the next result.

Theorem 3. Let 𝑑, ℓ ∈ N with ℓ ≥ 𝑑. There exists a cutoff 𝑐(𝑑) > 1 such that for every 𝑛 large

enough, and for all 𝑖 > 𝑛 · 𝑐(𝑑),

P
(
𝑀
𝑛,ℓ
𝑖

= 1
)
< P

(
𝑀
𝑛,𝑑
𝑖

= 1
)
.

Furthermore, 𝑐(𝑑) → 1 as 𝑑 → ∞.

While Theorem 1 allows us to compare the relative value of P(𝑀𝑛,𝑑
𝑖

= 1) for different

list lengths 𝑑, it does not give us any information on the absolute probability itself. This

probability decreases with 𝑖 and eventually converges to 0 as 𝑖 becomes large enough

(since all schools will have been taken), so a natural question is to ask how this probability

behaves for moderate values of 𝑖. It turns out that as 𝑑 increases, P(𝑀𝑛,𝑑
𝑛 = 1) quickly

approaches 1/2. This is significant for all students 𝑖 ≤ 𝑛 (since P(𝑀𝑛,𝑑
𝑖

= 1) decreases in 𝑖)
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and for all students when the number of students is comparable to the number of schools.

Recall that 𝐾𝑛,𝑑
𝑖

is the rank of the school that student 𝑖 gets matched to in their preference

list. We formalize this in the next result.

Theorem 4. Let 𝑑 ∈ N. For every 𝑛 large enough, we have

𝑑

2𝑑 + 1
≤ P

(
𝑀𝑛,𝑑
𝑛 = 1

)
≤ 2𝑑

4𝑑 + 1
. (1.2)

In particular,

lim
𝑑→∞

lim
𝑛→∞

P(𝑀𝑛,𝑑
𝑛 = 1) = 1

2
.

We additionally prove the following lemma that bounds the change in probability of

a given student getting matched to one of their top-𝑘 schools for 𝑘 ≤ 𝑑.

Lemma 5. Let 𝑑 ∈ N. For every 𝑛 large enough, 𝑘 ≤ 𝑑 and 𝑖 ≤ 𝑛, we have

P
(
𝐾
𝑛,𝑑
𝑖

≤ 𝑘

)
− P

(
𝐾
𝑛,𝑑+1
𝑖

≤ 𝑘

)
≤

(
𝑑 + 2

2𝑑 + 3

) 𝑘/(𝑑+1)
−

(
2𝑑 + 1
4𝑑 + 1

) 𝑘/𝑑
.

The dynamics of the discrete model. To analyze the discrete model, it is useful to study

the number of students matched to any school just before it is student 𝑖’s turn, given by

𝑇
𝑛,𝑑
𝑖

=

𝑖−1∑︁
𝑗=1

1{𝐾𝑛,𝑑
𝑗
<∞} .

Since each school has exactly one seat, 𝑇𝑛,𝑑
𝑖

coincides with the number of schools matched

to the students {1, . . . , 𝑖 − 1}. The number of schools that remain unmatched before stu-

dent 𝑖’s turn is therefore 𝑛 − 𝑇𝑛,𝑑
𝑖

.

We remark on one property of the random market, called the principle of deferred deci-

sions. This has proved useful in analyzing other markets, see for example [13]. Observe

that the preference list of student 𝑖 does not play a role in the output until exactly the
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𝑖-th round of Serial Dictatorship, when it is the turn of student 𝑖 to pick their favorite re-

maining school. We therefore do not need to specify 𝑖’s preference list until this moment,

allowing us to defer this decision until the list is needed. In particular, note that the dis-

tribution of 𝐾𝑛,𝑑
𝑖

depends only on 𝑇𝑛,𝑑
𝑖

: we only need to know the number of schools that

remain unmatched at the start of the turn to know the distribution of the position that the

student gets matched to. This is further illustrated below.

Suppose it is the 𝑖-th student’s turn, and the students prior to 𝑖 have been matched to

𝑘 schools, so 𝑇𝑛,𝑑
𝑖

= 𝑘 . It is then straightforward to compute the probability that a list of

𝑑 schools chosen uniformly at random from the set of 𝑛 schools will overlap with any of

the unmatched 𝑛 − 𝑘 schools, which is given by

P
(
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
=


1 − (𝑘𝑑)

(𝑛𝑑)
, 𝑘 ≥ 𝑑,

1, otherwise.
(1.3)

It is immediately clear from this formula that the probability of getting matched depends

only on 𝑛, 𝑑, and 𝑇𝑛,𝑑
𝑖

. Furthermore, all else held constant, P(𝑀𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘) decreases

as 𝑇𝑛,𝑑
𝑖

increases. The principle of deferred decisions allows us to connect our discrete

model to a continuous one, which we discuss next.

1.2.2 A Continuous Market Model

We now introduce a continuous market model, which we will show in the next sec-

tion to be equivalent to the limit (uniformly in probability) of the previously introduced

discrete market model.

Description. Consider a (deterministic) continuous matching model consisting of a unit

mass of schools and a continuum of students represented by the interval [0,∞) and in-

dexed by 𝑡 ≥ 0. Let 𝑑 ≥ 1 be a parameter of the market, and define 𝑥𝑑 (𝑡) to be the

proportion of schools matched to students in [0, 𝑡). We now define the market by the
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initial value problem

𝑥𝑑 (0) = 0, 𝑥′𝑑 (𝑡) = 1 − 𝑥𝑑 (𝑡)𝑑 . (1.4)

The interpretation of the initial value problem (1.4) is as follows: start with 𝑥𝑑 (0) = 0

and traverse students in order from 𝑡 = 0. At the time of student 𝑡, they get matched to

schools at rate 1− 𝑥𝑑 (𝑡)𝑑 , which is also then the rate by which 𝑥𝑑 (𝑡) increases at 𝑡. We note

𝑥′
𝑑
(𝑡) depends only on the proportion of schools matched until that point, and that 𝑥𝑑 (𝑡)

is smooth in its argument and takes values in [0, 1].

Dynamics. The dynamics of the continuous model are conceptually simple. Note that

𝑥𝑑 is everywhere strictly increasing, and 𝑥𝑑 (𝑡) → 1 as 𝑡 → ∞, but 𝑥′
𝑑
(𝑡) → 0 as 𝑡 → ∞.

Further, one immediately observes that for 𝑡 ≈ 0, 𝑥′
𝑑
(𝑡) ≈ 1: at the start, students are

getting matched at the highest possible rate. The parameter 𝑑 is a measure of intensity

of matching: if the proportion of schools matched were fixed, smaller 𝑑 would yield a

slower rate of matching.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t0.0

0.2

0.4

0.6

0.8
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Figure 1.1: Plots of 𝑥𝑑 and 𝑥′
𝑑

for various values of 𝑑: note how the values for 𝑥′
𝑑

cross just after 𝑡 = 1.

Similarly to the discrete model (see the discussion in Section 1.1.1), we see that there

are again two forces at play: for small 𝑑, the rate of getting matched is smaller, but si-

multaneously the proportion of schools taken up by earlier students is smaller, so later
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students may prefer small 𝑑 as it leaves them some schools to possibly get matched to. In-

deed, for 𝑡 exceeding 1, the probability of getting matched quickly vanishes as 𝑑 increases.

On the other hand, a large 𝑑 increases the rate of getting matched, but also reduces the

proportion of schools remaining by the time of student 𝑡’s turn.

We remark that although the description of the initial value problem in (1.4) might

look deceptively straightforward, actually analyzing it proves to be challenging. The dif-

ferential equation is highly non-linear, a special case of the Chini type differential equation

studied at least since 1924 [32], to which there is no known analytical solution for gen-

eral 𝑑 [33]. To circumvent this, we must find implicit ways of proving properties of the

differential equation that do not require finding an analytical solution explicitly.

1.2.3 From Continuous to Discrete

In this section we discuss the main theorem that connects the continuous and discrete

markets, then state our main results within the continuous realm, and finally describe

how they carry over to the discrete case.

Connection to the discrete model. We now give an intuition on how the discrete market

with fixed list length 𝑑 approaches the continuous market when the number of schools

𝑛→ ∞. We make this limit rigorous via a functional law of large numbers in Theorem 6.

To see the connection, consider the discrete market described in Section 1.2.1 for a

fixed list length 𝑑, and suppose we are at the turn of student 𝑡 = 𝑖/𝑛 for some fixed 𝑛.

Recall that 𝑇𝑛,𝑑
𝑖

is the number of schools taken by students {1, . . . , 𝑖 − 1}. In Lemma 12, we

show that

P
(
𝑀
𝑛,𝑑
𝑖

= 1
)
= 1 − (𝑇𝑛,𝑑

𝑖
/𝑛)𝑑 +𝑂 (𝑑2/𝑛). (1.5)

Now 𝑇
𝑛,𝑑
𝑖

/𝑛 is the proportion of schools taken by students {1, . . . , 𝑖 − 1} and so is an ana-

logue of 𝑥𝑑 (𝑡) (with 𝑡 = 𝑖/𝑛) in the continuous model, which denotes the proportion of
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schools taken by students in [0, 𝑡). In fact, Theorem 6 proves exactly that 𝑇𝑛,𝑑
𝑖

/𝑛→ 𝑥𝑑 (𝑖/𝑛)

as 𝑛 → ∞. In the limit as 𝑛 → ∞, the last term vanishes so when student 𝑡 = 𝑖/𝑛 has their

turn, they get matched to a school with probability 𝑥′
𝑑
(𝑡) = 1 − 𝑥𝑑 (𝑡)𝑑 . Indeed, we show in

Lemma 7 that P(𝑀𝑛,𝑑
𝑖

= 1) → 𝑥′
𝑑
(𝑖/𝑛) in probability as 𝑛 → ∞. In the continuous model

𝑑 is therefore the analogue of the list length (but is now relaxed to be any real number in

[1,∞)).

100 200 300 400 500

Student i

50

100

150

200

250
T n,di for n = 250, d = 3, 100 simulations with the continuous model overlaid

Figure 1.2: 100 simulations of the discrete model with the continuous model overlaid.

The following theorem, proved in Section 1.3.1, describes rigorously how the contin-

uous market is a limit of the discrete market, showing that 𝑇𝑛,𝑑
𝑖

/𝑛 → 𝑥𝑑 (𝑖/𝑛) as 𝑛 → ∞ in

a very strong sense.

Theorem 6. Fix 𝑑 ∈ N and define 𝑝(𝑥) = 1 − 𝑥𝑑 for 𝑥 ∈ [0, 1]. For 𝑡 ≥ 0, let 𝑇𝑛,𝑑⌊𝑡𝑛⌋ be the random

variable denoting the number of schools matched by the first ⌊𝑡𝑛⌋ students when there are 𝑛 schools

in the discrete random market with list length 𝑑. Then 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ → 𝑥𝑑 (𝑡) uniformly in probability

as 𝑛→ ∞, where 𝑥𝑑 (𝑡) is the unique solution satisfying 𝑥𝑑 (0) = 0 and 𝑥′
𝑑
(𝑡) = 𝑝(𝑥𝑑 (𝑡)) for 𝑡 ≥ 0.

That is, for all 𝑠 ≥ 0 and 𝜀 > 0, as 𝑛→ ∞,

P

(
sup
𝑡∈[0,𝑠]

���𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� ≥ 𝜀) → 0. (1.6)
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Moreover, as 𝑛→ ∞ for all 𝑟 ≥ 1, we have

E
(���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
���𝑟 ) → 0. (1.7)

In particular, (1.6) implies that as 𝑛→ ∞, the number of schools taken prior to student

𝑡 = 𝑖/𝑛 converges in probability to the continuous market defined by the initial value

problem (1.4). Not only does the proportion of schools taken converge in probability for

every point 𝑡 ≥ 0 and its mean converge to the continuous solution (by taking 𝑟 = 1

in (1.7)), but additionally on a sample path level, the maximum deviations of the random

market around the continuous solution vanish in probability. This is a very strong form of

pathwise convergence. The theorem additionally posits that the initial value problem (1.4)

defining the continuous market has a unique solution satisfying the boundary data and

that this solution extends to all time 𝑡 ≥ 0.

The next lemma rigorously connects the match rates of the discrete and continuous

models in this limit. Recall that 𝑀𝑛,𝑑
𝑖

is the indicator random variable for whether student

𝑖 gets matched to any school in the discrete random market with 𝑛 schools and preference

lists of length 𝑑.

Lemma 7. For all 𝑑 ∈ N, 𝑡 ≥ 0, we have P(𝑀𝑛,𝑑

⌊𝑡𝑛⌋ = 1) → 𝑥′
𝑑
(𝑡) as 𝑛→ ∞.

To understand how the list length 𝑑 affects P(𝑀𝑛,𝑑
𝑖

= 1), we therefore need to under-

stand how the 𝑑 parameter affects 𝑥′
𝑑
(𝑡). That is, if for all ℓ > 𝑑, 𝑥′

ℓ
(𝑡) ≥ 𝑥′

𝑑
(𝑡) for some

𝑡 ≥ 0, then student 𝑡 = 𝑖/𝑛 prefers lists of length ℓ to those of length 𝑑 for large enough 𝑛.

Student 𝑡 then always prefers longer lists to shorter ones. Similarly if for some 𝑡 ≥ 0, we

have 𝑥′
ℓ
(𝑡) < 𝑥′

𝑑
(𝑡), then student 𝑡 prefers shorter lists. Our task of understanding match

probability therefore becomes one of understanding 𝑥′
𝑑
(𝑡) in the continuous market.

The case of 𝑑 = 1 and 𝑑 = 2. For 𝑑 = 1 and 𝑑 = 2, we can in fact compute analytic

solutions to the initial value problem (1.4) defining the continuous market. For the case
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of 𝑑 = 1, we unsurprisingly get

𝑥1(𝑡) = 1 − 𝑒−𝑡 , 𝑥′1(𝑡) = 𝑒
−𝑡 ,

and for 𝑑 = 2 we get

𝑥2(𝑡) =
𝑒𝑡 − 𝑒−𝑡
𝑒𝑡 + 𝑒−𝑡 ; 𝑥′2(𝑡) =

4𝑒2𝑡

(𝑒2𝑡 + 1)2 .

The latter may also be written 𝑥2(𝑡) = tanh(𝑡) and 𝑥′2(𝑡) = sech(𝑡)2 in terms of the hyper-

bolic functions. With these analytic expressions, one can solve to find 𝑥′2(𝑡) ≥ 𝑥′1(𝑡) if and

only if 𝑡 ≤ 1.219. This means that for students before this cutoff, they prefer lists of length

2 to lists of length 1, and vice versa for larger 𝑡 (see Figure 1.3). We wish to highlight two

key phenomena from this example. Firstly, all students in 𝑡 ∈ [0, 1] have a higher prob-

ability of getting matched to any school with longer lists compared to shorter lists, and

secondly, there is a cutoff (after 𝑡 = 1) where this behavior reverses and students prefer

shorter lists.
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0.6

0.8

1.0

xd(t)
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d = 1 d = 2

Figure 1.3: Plots of 𝑥𝑑 and 𝑥′
𝑑

for 𝑑 = 1 and 𝑑 = 2. Note that students before the highlighted cutoff at 𝑡 = 1.219
have higher probability of being assigned to any school with longer lists, and vice versa for students after
the cutoff.

The case of general 𝑑. In the case of general 𝑑, the initial value problem (1.4) cannot

be solved analytically, so we cannot hope to analyze the market dynamics directly in
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the same way as for 𝑑 = 1 and 𝑑 = 2. Nonetheless, we are able to prove these results

implicitly, and our main results show that for general 𝑑 these two phenomena still hold:

all students in 𝑡 ∈ [0, 1] have a higher probability of getting matched to any school with

larger 𝑑, and there is some cutoff 𝑐(𝑑) > 1 so that for 𝑡 > 𝑐(𝑑), this preference reverses and

those students prefer shorter lists. We furthermore show that this cutoff approaches 1 as

𝑑 → ∞, so for large 𝑑, all students prefer longer lists if and only if the market is balanced.

These two results are formalized for the continuous realm in the form of the following

two theorems.

Theorem 8. For all ℓ > 𝑑 ≥ 1 and for all 𝑡 ∈ (0, 1], 𝑥′
ℓ
(𝑡) > 𝑥′

𝑑
(𝑡).

Theorem 9. For all 𝑑 ≥ 1, there exists 𝑐(𝑑) > 1 such that for all ℓ > 𝑑 and 𝑡 ≥ 𝑐(𝑑), 𝑥′
ℓ
(𝑡) <

𝑥′
𝑑
(𝑡). Furthermore, 𝑐(𝑑) → 1 as 𝑑 → ∞.

We later combine these two results with the limit results in Theorem 6 and Lemma 7

to bring them back to the discrete market as Theorem 1 and Theorem 3, respectively.

1.2.4 Implications and Extensions

Random Serial Dictatorship. In the Random Serial Dictatorship mechanism, the order

in which students propose is chosen randomly from all possible permutations of students

before the mechanism starts. When applied to our setting, it introduces an additional

layer of randomness, on top of the random preferences of students.

Formally, consider a modification of our model, where there are 𝑛 schools each with

one seat, and 𝑚 ∈ N students ordered randomly. Each student has a strict preference

list of 𝑑 schools chosen uniformly at random from the set of 𝑛 schools. For 𝑑, 𝑛 ∈ N, we

denote by 𝑅𝑛,𝑑 the indicator random variable for the event that a student is matched to

some school under the Random Serial Dictatorship algorithm (note that this probability

does not depend on the specific student, while it depends on 𝑚, but we are omitting this

dependency for the sake of brevity). The following is an easy corollary of Lemma 2.
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Corollary 10. Let 𝑑, ℓ, 𝑛 ∈ N with 𝑛 ≥ ℓ ≥ 𝑑. We have

P
(
𝑅𝑛,ℓ = 1

)
≥ P

(
𝑅𝑛,𝑑 = 1

)
.

Proof. By symmetry, we have P(𝑅𝑛,𝑑 = 1) = 𝑛
𝑚
P(𝐻𝑛,𝑑

1 (𝑚) = 1). By Lemma 2, P(𝐻𝑛,𝑑

1 (𝑚) = 1)

increases with 𝑑 so P(𝑅𝑛,𝑑 = 1) also increases with 𝑑. □

Schools with multiple seats. In this section we discuss an extension of our model to

the case where schools each have exactly 𝑞 = 1, 2, 3, . . . , thereby relaxing the assumption

of a single seat per shcool. Like in the simpler case, we are interested in the probability

that students 𝑖 = 1, 2, 3, . . . get matched to any school as they each have their turn and are

(possibly) matched to one of their remaining acceptable schools. We briefly describe this

extension here and leave a detailed discussion with proofs to Appendix A.2.

Formally fix 𝑞 ∈ N and let 𝑛 be the number of schools, this time each with 𝑞 seats.

As student 𝑖 = 1, 2, . . . arrives, they randomly sample 𝑑 schools as their preference list.

We denote by 𝑀𝑛,𝑑,𝑞

𝑖
the indicator random variable of whether this student gets matched

to any school in this list. In addition to keeping track of the number of schools with no

seats remaining, 𝑇𝑛,𝑑,𝑞
𝑖

, we now also define the vector 𝑆𝑖 = (𝑆0
𝑖
, 𝑆1
𝑖
, 𝑆2
𝑖
, . . . , 𝑆

𝑞−1
𝑖

) counting

the number of schools with 𝑘 = 0, 1, . . . , 𝑞 − 1 seats taken by the start of the 𝑖-th turn

(we do not include the market parameters in the notation of 𝑆𝑖 for brevity). We discuss

the specifics of the market dynamics in Appendix A.2, where we also prove Lemma 99

which is an analogue of Theorem 6 in the case of multiple seats, rigorously connecting this

discrete market to a continuous one. It shows that 𝑛−1𝑇
𝑛,𝑑,𝑞

⌊𝑡𝑛⌋ → 𝑥𝑑 (𝑡) and 𝑛−1𝑆⌊𝑡𝑛⌋ → 𝑦𝑑 (𝑡)

uniformly in probability as 𝑛 → ∞ where 𝑥𝑑 (𝑡) and 𝑦𝑑 (𝑡) = (𝑦0
𝑑
(𝑡), . . . , 𝑦𝑞−1

𝑑
(𝑡)) are given
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by the initial value problem (we denote derivative with respect to 𝑡 by dot for clarity)

𝑦0
𝑑 (0) = 1, ¤𝑦0

𝑑 (𝑡) = −1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

𝑦0
𝑑 (𝑡),

𝑦𝑘𝑑 (0) = 0, ¤𝑦𝑘𝑑 (𝑡) =
1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

(𝑦𝑘−1
𝑑 (𝑡) − 𝑦𝑘𝑑 (𝑡)), 𝑘 = 1, 2, . . . , 𝑞 − 1, (1.8)

𝑥𝑑 (0) = 0, ¤𝑥𝑑 (𝑡) =
1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

𝑦
𝑞−1
𝑑

(𝑡).

Again, this differential equation is analytically intractable for general values of 𝑑 and

𝑞, but we provide an explicit solution for 𝑑 = 1 and arbitrary 𝑞 in Appendix A.2, then

provide a connection between that solution and the solution for arbitrary parameters. We

also have Lemma 11, an analogue of Lemma 7 connecting the continuous solution to the

match probability.

Lemma 11. For all 𝑑 ∈ N, 𝑡 ≥ 0, we have P(𝑀𝑛,𝑑,𝑞

⌊𝑡𝑛⌋ = 1) → 1 − 𝑥𝑑 (𝑡)𝑑 as 𝑛→ ∞.

In the case of 𝑞 = 1 we observe interesting behavior near the point where the market

is balanced, at 𝑖 ≈ 𝑛. Now with 𝑞 > 1 we would look for this at 𝑖 ≈ 𝑛𝑞 due to the higher

number of seats. Indeed, based on numerical experiments (some of which are reported in

Section 1.5), we conjecture that the following extension of Theorem 1 holds. Let 𝑑, ℓ ∈ N

with ℓ ≥ 𝑑. For every 𝑛 large enough and 𝑖 ≤ 𝑛𝑞, we have

P
(
𝑀
𝑛,ℓ,𝑞

𝑖
= 1

)
≥ P

(
𝑀
𝑛,𝑑,𝑞

𝑖
= 1

)
.

The missing piece to prove Conjecture 1.2.4 is a result like Theorem 8 in the case of 𝑞 ≥ 1.

We defer the rest of the discussion of multiple seats to Appendix A.2.

1.2.5 Discussion of the Discrete Model

Models where agents have preference lists that are sampled uniformly at random from

the list of all permutations (possibly of bounded size, as in ours) form a very common

theoretical assumption for the study of two-sided matching markets, see for example [17,
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13, 15, 16, 18]. One of the reasons for the popularity of these models is that they often

lead to tractable expressions. Results can then be verified to hold numerically for models

with correlated preferences, or this can motivate further analytical study of such more

cumbersome markets. Our approach follows this general line of inquiry, with our main

results (Theorem 1 and Theorem 3) proved for the case where lists are sampled uniformly

at random, and verified numerically in Section 1.4 for preference lists sampled from more

complex distributions.

The choice of Serial Dictatorship for the mechanism investigated in this chapteris mo-

tivated by multiple facts. First, its relevance: it is broadly studied in theory (including

its randomized version, see for example [5, 23]) and applied in practice to many settings,

most famously house allocation problems [34]. A Serial Dictatorship mechanism also

naturally arises in the case of two-sided stable matching problems where schools have

a shared (homogeneous) and strict preference list over the students, for instance when

school preference is dictated by test scores, or by a lottery system where the lottery num-

ber determines priority [26]. In such cases, the Deferred Acceptance mechanism reduces

to Serial Dictatorship, with students arriving according to the shared order and picking

their favorite remaining school. Both of these scenarios are common in school districts.

For instance, in the New York primary school matching, the Department of Education

has very limited information on students and so assigns priorities largely at random, and

even completely at random in cases such as city-wide gifted and talented schools (where

the admissible students are restricted to those who are considered gifted or talented). On

the other hand, the NYC specialized high schools are by law required to only rank stu-

dents uniquely by their score on the standardized Specialized High School Admissions

Test (SHSAT) [35].

Another reason to study the Serial Dictatorship mechanism is that it endows stu-

dents with an obvious order, allowing granular statements to be made about each stu-

dent uniquely (such as in our case discussing outcomes based on order). In many other
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mechanisms where students do not have a natural order, students become indistinguish-

able, and one can hope for at most aggregate level statements and results. For example in

school matching, one may wish to make statements about “better students”, but if schools

do not rank all students in the same order, it becomes difficult to distinguish good stu-

dents from bad students in the way we are able to do so.

1.3 Proofs of Main Results

1.3.1 Connections Between the Discrete and Continuous Markets

In this section we prove the following theorem, which rigorously establishes the dis-

crete market converging to the continuous market as 𝑛→ ∞.

Theorem 6. Fix 𝑑 ∈ N and define 𝑝(𝑥) = 1 − 𝑥𝑑 for 𝑥 ∈ [0, 1]. For 𝑡 ≥ 0, let 𝑇𝑛,𝑑⌊𝑡𝑛⌋ be the random

variable denoting the number of schools matched by the first ⌊𝑡𝑛⌋ students when there are 𝑛 schools

in the discrete random market with list length 𝑑. Then 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ → 𝑥𝑑 (𝑡) uniformly in probability

as 𝑛→ ∞, where 𝑥𝑑 (𝑡) is the unique solution satisfying 𝑥𝑑 (0) = 0 and 𝑥′
𝑑
(𝑡) = 𝑝(𝑥𝑑 (𝑡)) for 𝑡 ≥ 0.

That is, for all 𝑠 ≥ 0 and 𝜀 > 0, as 𝑛→ ∞,

P

(
sup
𝑡∈[0,𝑠]

���𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� ≥ 𝜀) → 0. (1.6)

Moreover, as 𝑛→ ∞ for all 𝑟 ≥ 1, we have

E
(���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
���𝑟 ) → 0. (1.7)

We begin by computing an approximation to the probability of a student getting

matched in the discrete case.

Lemma 12 (Probability of getting matched). In the discrete market with 𝑛 schools, we have

���P (
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
−

(
1 − (𝑘/𝑛)𝑑

)��� ≤ 𝑑2/𝑛.
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That is, when 𝑘 schools have been matched prior to student 𝑖, then the probability that student 𝑖

gets matched to any school is approximated by 1 − (𝑘/𝑛)𝑑 .

Proof. Recall that when it is student 𝑖’s turn, they get matched to any school with prob-

ability given in (1.3), which for 𝑘 ≥ 𝑑 states P
(
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
= 1 −

(𝑘
𝑑

)
/
(𝑛
𝑑

)
. This is

the complement of the probability that a random list of 𝑑 schools sampled from 𝑛 without

replacement will overlap entirely with the list of 𝑘 taken schools. Consider now an alter-

native procedure where student 𝑖 samples a list of 𝑑 schools with replacement, where each

school has a probability of 𝑘/𝑛 of being already taken by previous students. The probabil-

ity of sampling a list with at least one school not taken by previous students conditioned

on exactly 𝑘 schools having been matched to students 1, . . . , 𝑖 − 1 would be 1 − (𝑘/𝑛)𝑑 .

It remains to bound the difference between sampling the preference lists with replace-

ment and sampling them without replacement. Observe that the outcomes differ exactly

in the case that we choose at least one pair of schools that are the same while sampling

with replacement. Otherwise the outcomes coincide. Formally, consider the probabil-

ity space generated by the student sampling with replacement, assuming 𝑘 schools are

matched to students 1, . . . , 𝑖 − 1. Let 𝐸 be the event that student 𝑖 gets matched to any

school and let 𝑋 be the event that the sample contains a repeated school. We have

P
(
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
= P (𝐸 | 𝑋𝑐), and P (𝐸) = 1 − (𝑘/𝑛)𝑑 . Now with the law of total

probability, write

|P (𝐸) − P (𝐸 | 𝑋𝑐) | = |P (𝐸 | 𝑋) P (𝑋) + P (𝐸 | 𝑋𝑐) (1 − P (𝑋)) − P (𝐸 | 𝑋𝑐) |

= P (𝑋) |P (𝐸 | 𝑋) − P (𝐸 | 𝑋𝑐) |

≤ P (𝑋) .

Finally we bound P (𝑋), the probability that a sample drawn with replacement contains

duplicate items. Observe that for each of the 𝑑 (𝑑 − 1)/2 pairs of positions in the sample

there is exactly a 1/𝑛 probability that that pair is the same. Using the union bound, this
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yields P (𝑋) ≤ 𝑑 (𝑑−1)
2𝑛 ≤ 𝑑2/𝑛. □

Our aim is to show that the discrete market converges to the continuous one as 𝑛 grows

large. We assume here that reader is familiar with the theory of ordinary differential

equations and Markov processes. A gentle introduction to the relevant background can

be found in Appendix A.1.

To connect the behavior of the discrete market with that of the continuous market, we

apply the following theorem. See [36, Theorem 17.3.1] for this version and [37] for a proof.

Theorem 13 (A Functional Law of Large Numbers). Suppose
{
𝐽𝑛𝑡

}
𝑛=1,2,... is a family of con-

tinuous time Markov chains on finite state spaces where for 𝑡 ≥ 0, 𝐽𝑛𝑡 takes values in S𝑛 ⊆ Z and

has transition rate matrix 𝑄𝑛 = (𝑞𝑛 (𝑖, 𝑗); 𝑖, 𝑗 ∈ S𝑛). Suppose that there is a subset D ⊆ R and a

family { 𝑓 𝑛}𝑛=1,2,... of functions with 𝑓 𝑛 : D × Z → R which are bounded and continuous in the

first argument such that, for each 𝑖 ∈ S𝑛 and 𝑘 ∈ Z \ {0} such that 𝑖 + 𝑘 ∈ S𝑛, we have

𝑞𝑛 (𝑖, 𝑖 + 𝑘) = 𝑛 𝑓 𝑛 (𝑖/𝑛, 𝑘). (1.9)

Define 𝑔𝑛 (𝑥) = ∑
𝑘∈Z 𝑘 𝑓

𝑛 (𝑥, 𝑘) for 𝑥 ∈ D, and suppose there exists a Lipschitz continuous func-

tion 𝑔 : D → R such that the 𝑔𝑛 converge uniformly to 𝑔 on D. Suppose lim𝑛→∞ 𝑛−1𝐽𝑛0 = 𝑥0

for some 𝑥0. Then there exists a unique deterministic trajectory 𝑥(𝑡) satisfying 𝑥(0) = 𝑥0 and

𝑥′(𝑡) = 𝑔(𝑥(𝑡)), 𝑥(𝑡) ∈ D, 𝑡 ∈ [0, 𝑇], and {𝑛−1𝐽𝑛𝑡 }𝑡≥0 converges uniformly in probability on [0, 𝑇]

to 𝑥(𝑡).

We are now ready to prove Theorem 6.

Proof of Theorem 6. As in the statement of the theorem, fix 𝑑 ≥ 1 and define 𝑝(𝑥) = 1 − 𝑥𝑑

for 𝑥 ∈ [0, 1]. For 𝑡 ≥ 0, define 𝑋𝑛𝑡 = 𝑇
𝑛,𝑑

⌊𝑛𝑡⌋ . Letting Δ = 𝑛−1 for convenience, note that

{𝑋𝑛𝑡 }𝑡=0,Δ,2Δ,... is a discrete time Markov chain on the state space S𝑛 = {0, 1, . . . , 𝑛} with
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transition probabilities

P
(
𝑋𝑛𝑡+Δ = 𝑗 | 𝑋𝑛𝑡 = 𝑖

)
=


𝑝𝑛
𝑖
, 𝑗 = 𝑖 + 1,

1 − 𝑝𝑛
𝑖
, 𝑗 = 𝑖,

0, otherwise.

where 𝑝𝑛
𝑖
= 1 − (𝑖/𝑛)𝑑 ±𝑂 (𝑑2/𝑛) by Lemma 12.

Starting from {𝑋𝑛𝑡 }𝑡=0,Δ,2Δ, we will now construct a sequence of continuous time Markov

chains that satisfy the conditions of Theorem 13, then bring back the result to the discrete

time chain.

Associate to each discrete time chain {𝑋𝑛𝑡 }𝑡=0,Δ,2Δ,..., a coupled continuous time Markov

chain {𝐽𝑛𝑡 }𝑡≥0 as follows: let 𝐻𝑛
𝑡 be a homogeneous Poisson process with rate 𝜆 = 𝑛, and

let {𝐽𝑛𝑡 }𝑡≥0 be defined by 𝐽𝑛𝑡 = 𝑋𝑛
Δ𝐻𝑛

𝑡
. This is a well-known embedding technique (see

Theorem 96 in Appendix A.1 for a statement and discussion) and yields the transition

rate matrix

𝑞𝑛 (𝑖, 𝑗) =


𝑛𝑝𝑛

𝑖
, 𝑗 = 𝑖 + 1,

−𝑛𝑝𝑛
𝑖
, 𝑗 = 𝑖,

0, otherwise.

Set 𝑓 𝑛 (𝑥, 1) = 𝑝𝑛𝑥𝑛 and 𝑓 𝑛 (𝑥, ·) = 0 otherwise. We now verify that we can apply Theorem 13.

First, let S𝑛 = {0, 1, 2, . . . , 𝑛} and D = [0, 1]. Note 𝑞𝑛, 𝑓 𝑛 satisfy (1.9): we only need to check

𝑘 = 1 in (1.9), which we verify as

𝑞𝑛 (𝑖, 𝑖 + 1) = 𝑛𝑝𝑛𝑖 = 𝑛 𝑓 𝑛 (𝑖/𝑛, 1).

For each 𝑛, 𝑓 𝑛 is clearly bounded and continuous in the first argument. We moreover
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have for all 𝑥 ∈ [0, 1]

𝑔𝑛 (𝑥) =
∑︁
𝑘∈Z

𝑘 𝑓 𝑛 (𝑥, 𝑘)

= 𝑝𝑛𝑥𝑛

= 𝑝(𝑥) ±𝑂 (𝑑2/𝑛), (by Lemma 12)

hence 𝑔𝑛 → 𝑝 uniformly, since |𝑔𝑛 (𝑥) − 𝑝(𝑥) | = 𝑂 (𝑑2/𝑛) is independent of 𝑥. Observe that

𝑝 is Lipschitz-continuous with Lipschitz-constant 𝑑. Since 𝐽𝑛0 = 0, we have 𝑛−1𝐽𝑛0 = 0.

We can therefore apply Theorem 13 and deduce that {𝑛−1𝐽𝑛𝑡 }𝑡≥0 converges uniformly

in probability to the unique solution 𝑥𝑑 (𝑡) of the initial value problem (1.4).

To carry over convergence uniformly in probability to the discrete Markov chain {𝑋𝑛𝑡 }𝑡=0,Δ,2Δ,...,

fix some 𝑠 ≥ 0. Recall that, for 𝜏 ≥ 0, 𝐻𝑛
𝜏 is the count of events in the underlying Poisson

process up to time 𝜏. Since every event of 𝐻𝑛
𝑡 corresponds to to either a unit jump in

{𝑋𝑛𝑡 }𝑡=0,Δ,2Δ,... (that is, 𝑋𝑛
𝑡+Δ = 𝑋𝑛𝑡 + 1) or no transition (that is, 𝑋𝑛

𝑡+Δ = 𝑋𝑛𝑡 ), we have for each

𝑡 ≥ 0.

��𝑋𝑛𝑡 − 𝐽𝑛𝑡 �� = ���𝑋𝑛𝑡 − 𝑋𝑛Δ𝐻𝑛
𝑡

���
≤

��⌊𝑛𝑡⌋ − 𝐻𝑛
𝑡

��
≤ 1 +

��𝑛𝑡 − 𝐻𝑛
𝑡

�� .
This yields

sup
𝑡∈[0,𝑠]

���𝑛−1𝑋𝑛𝑡 − 𝑥𝑑 (𝑡)
��� ≤ sup

𝑡∈[0,𝑠]

���𝑛−1𝑋𝑛𝑡 − 𝑛−1𝐽𝑛𝑡

��� + sup
𝑡∈[0,𝑠]

���𝑛−1𝐽𝑛𝑡 − 𝑥𝑑 (𝑡)
���

≤ 1
𝑛
+ sup
𝑡∈[0,𝑠]

���𝑡 − 𝑛−1𝐻𝑛
𝑡

��� + sup
𝑡∈[0,𝑠]

���𝑛−1𝐽𝑛𝑡 − 𝑥𝑑 (𝑡)
��� . (1.10)
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Note that 𝑛−1𝐻𝑛
𝑡 − 𝑡 is a martingale6, and applying Doob’s martingale inequality (see

Theorem 98 of Appendix A.1) we have

P

(
sup
𝑡∈[0,𝑠]

���𝑛−1𝐻𝑛
𝑡 − 𝑡

��� ≥ 𝜀) ≤ 𝜀−2E
(
(𝑛−1𝐻𝑛

𝑠 − 𝑠)2
)

=
𝑠

𝜀2𝑛
. (1.11)

To see that the latter inequality holds, observe E
(
𝑛−1𝐻𝑛

𝑠

)
= 𝑠, so E

(
(𝑛−1𝐻𝑛

𝑠 − 𝑠)2) equals

the variance of 𝑛−1𝐻𝑛
𝑠 . Since 𝐻𝑛

𝑠 has a Poisson distribution with rate 𝑛𝑠, (1.11) follows.

Note that the second (by (1.11)) and third (by Theorem 13) terms of the right-hand side

of (1.10) vanish in probability as 𝑛→ ∞. So we must have that 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ → 𝑥𝑑 (𝑡) uniformly

in probability as 𝑛 → ∞. The convergence in 𝑟-mean follows since 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ is bounded,

see Lemma 90 in Appendix A.1. □

We connect the solution to preferences of students via the following lemma.

Lemma 14. For all 𝑑 ∈ N, 𝑡 ≥ 0, we have P(𝑀𝑛,𝑑

⌊𝑡𝑛⌋ = 1) → 𝑥′
𝑑
(𝑡) as 𝑛→ ∞.

Proof. Fix 𝑑 ∈ N, and 𝑡, 𝜀 > 0. We will show that there exists 𝑁 ∈ N such that for 𝑛 > 𝑁 ,

���P (
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1
)
− 𝑥′𝑑 (𝑡)

��� < 𝜀.
To proceed, observe that Lemma 12 implies that there exists 𝑁1 such that for 𝑛 > 𝑁1 and

all 𝑥 ∈ [0, 1],

���P (
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1 | 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ = 𝑥
)
− (1 − 𝑥𝑑)

��� ≤ 𝜀

4
.

Next, note that 1 − 𝑥𝑑 is continuous in 𝑥, so there exists some 𝛿 > 0 such that for all 𝑦 with
6For 𝑠 ≥ 𝑡, using the independence of increments property and the fact that E

(
𝐻𝑛

𝑠−𝑡
)
= 𝑛(𝑠 − 𝑡), we have

E
(
𝑛−1𝐻𝑛

𝑠 − 𝑠 | 𝐻𝑛
𝑡

)
− (𝑛−1𝐻𝑛

𝑡 − 𝑡) = E
(
𝑛−1 (𝐻𝑛

𝑠 − 𝐻𝑛
𝑡 ) | 𝐻𝑛

𝑡

)
− (𝑠 − 𝑡) = E

(
𝑛−1 (𝐻𝑛

𝑠−𝑡 )
)
− (𝑠 − 𝑡) = 0.
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|𝑦 − 𝑥 | ≤ 𝛿,
��(1 − 𝑥𝑑) − (1 − 𝑦𝑑)

�� < 𝜀/4. Combining these two facts, we have that

���P (
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1 | 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ = 𝑦, |𝑦 − 𝑥 | ≤ 𝛿
)
− (1 − 𝑥𝑑)

��� ≤ 𝜀

4
+ 𝜀

4
=
𝜀

2
.

By Theorem 6, there exists now 𝑁2 ∈ N such that for 𝑛 > 𝑁2,

P
(���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� > 𝛿) < 𝜀

2
.

Let 𝑁 = max {𝑁1, 𝑁2}, then putting all these together with the law of total probability, we

have for 𝑛 > 𝑁

���P (
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1
)
− 𝑥′𝑑 (𝑡)

��� = ����P (
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1 |
���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� ≤ 𝛿) P (���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� ≤ 𝛿)

+ P
(
𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1 |
���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� > 𝛿) P (���𝑛−1𝑇

𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� > 𝛿) − 𝑥′𝑑 (𝑡)����

≤
���P (

𝑀
𝑛,𝑑

⌊𝑡𝑛⌋ = 1 | 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ = 𝑦, |𝑦 − 𝑥𝑑 (𝑡) | ≤ 𝛿
)
+ P

(���𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ − 𝑥𝑑 (𝑡)
��� > 𝛿) − 𝑥′𝑑 (𝑡)���

<

���1 − 𝑥𝑑 (𝑡)𝑑 +
𝜀

2
+ 𝜀

2
− 𝑥′𝑑 (𝑡)

���
= 𝜀,

as required, since 𝜀 > 0 was arbitrary. □

1.3.2 Continuous Market

In this section we prove that the match rate in the continuous market increases with 𝑑

for all students 𝑡 ∈ [0, 1], and that there exists a cutoff 𝑐(𝑑) > 1 approaching 1 as 𝑑 → ∞

such that the match rate decreases in 𝑑 for students 𝑡 ≥ 𝑐(𝑑). Significant technical portions

of the proofs are deferred to Appendix A.3. We begin by introducing an integral equation

that will aid our analysis.

Lemma 15. A function 𝑥𝑑 (𝑡) is a solution to the initial value problem (1.4) if and only if it solves
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the integral equation

𝑡 =

∫ 𝑥𝑑 (𝑡)

0

1
1 − 𝑢𝑑

𝑑𝑢. (1.12)

Proof. Note that 𝑥𝑑 (0) = 0, and by implicitly differentiating (1.12) with respect to 𝑡, we

recover the required condition on the derivative of 𝑥𝑑 (𝑡) with respect to 𝑡, that is, 𝑥′
𝑑
(𝑡) =

1 − 𝑥𝑑 (𝑡)𝑑 . □

We next prove a technical lemma that relates the sign of 𝜕
𝜕𝑑
𝑥′
𝑑
(𝑡) to the sign of a certain

integral, then defer the rest of the technicalities to Appendix A.3 where we bound the

actual integrals.

Lemma 16. Let 𝑥𝑑 (𝑡) be defined for all 𝑑 ≥ 1 and 𝑡 > 0 as in the initial value problem (1.4). Then

𝜕

𝜕𝑑
𝑥′𝑑 (𝑡) ·

∫ 𝑥𝑑 (𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 < 0. (1.13)

That is, 𝜕
𝜕𝑑
𝑥′
𝑑
(𝑡) has opposite sign to the integral.

Proof. We use the notation 𝑥(𝑑, 𝑡) and simplify to 𝑥 when it is clear from the context. With

this notation, the initial value problem (1.4) becomes 𝜕
𝜕𝑡
𝑥(𝑑, 𝑡) = 1 − 𝑥𝑑 with 𝑥(𝑑, 0) = 0.

Note that 𝑥 is twice continuously differentiable on its domain so its partial derivatives

commute.

Using now the Leibniz integral rule to implicitly differentiate the integral representa-

tion in (1.12) with respect to 𝑑, we obtain

0 =
𝜕

𝜕𝑑

(∫ 𝑥(𝑑,𝑡)

0

1
1 − 𝑢𝑑

𝑑𝑢

)
=

∫ 𝑥(𝑑,𝑡)

0

𝜕

𝜕𝑑

(
1

1 − 𝑢𝑑

)
𝑑𝑢 + 1

1 − 𝑥(𝑑, 𝑡)𝑑
𝜕𝑥

𝜕𝑑
.
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Rearranging for 𝜕𝑥
𝜕𝑑

and computing the derivative in the integrand yields

𝜕𝑥

𝜕𝑑
= −(1 − 𝑥(𝑑, 𝑡)𝑑)

∫ 𝑥(𝑑,𝑡)

0

𝑢𝑑 log 𝑢
(1 − 𝑢𝑑)2 𝑑𝑢. (1.14)

= −𝜕𝑥
𝜕𝑡

∫ 𝑥(𝑑,𝑡)

0

𝑢𝑑 log 𝑢
(1 − 𝑢𝑑)2 𝑑𝑢.

Note that 𝜕𝑥
𝜕𝑡

is strictly positive, and the integrand is negative (since 0 < 𝑢 < 𝑥 ≤ 1, so

log 𝑢 ≤ 0). This means 𝜕𝑥
𝜕𝑑

> 0 (intuitively, fixing 𝑡 and increasing 𝑑 will increase the

number of schools taken). Next compute

𝜕2𝑥

𝜕𝑑𝜕𝑡
=
𝜕

𝜕𝑑
(1 − 𝑥(𝑑, 𝑡)𝑑)

= −𝑥𝑑 log 𝑥 − 𝑑𝑥𝑑−1 𝜕𝑥

𝜕𝑑

= −𝑥𝑑−1(1 − 𝑥𝑑)
(
𝑥 log 𝑥 + 𝑑 𝜕𝑥

𝜕𝑑

1 − 𝑥𝑑

)
.

Expressing the last multiplier as two integrals, we get

𝑥 log 𝑥 + 𝑑 𝜕𝑥
𝜕𝑑

1 − 𝑥𝑑
=
𝑥 log 𝑥
1 − 𝑥𝑑

−
∫ 𝑥

0

𝑑𝑢𝑑 log 𝑢
(1 − 𝑢𝑑)2 𝑑𝑢

=

∫ 𝑥

0

(
1

1 − 𝑢𝑑
+
𝑑𝑢𝑑 log 𝑢
(1 − 𝑢𝑑)2 +

log 𝑢
1 − 𝑢𝑑

)
𝑑𝑢 −

∫ 𝑥

0

𝑑𝑢𝑑 log 𝑢
(1 − 𝑢𝑑)2 𝑑𝑢

=

∫ 𝑥

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢.

We therefore have

𝜕2𝑥

𝜕𝑑𝜕𝑡
= −𝑥𝑑−1(1 − 𝑥𝑑)

(∫ 𝑥

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢

)
.

For 𝑡 > 0, we have −𝑥𝑑−1(1 − 𝑥𝑑) < 0, which completes the proof. □

With this lemma, we can then prove Theorem 8 and Theorem 9 by bounding the ap-

propriate integral, whose technicalities we defer to Appendix A.3. We quote these theo-
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rems here and give a brief note on how we prove them.

Theorem 8. For all ℓ > 𝑑 ≥ 1 and for all 𝑡 ∈ (0, 1], 𝑥′
ℓ
(𝑡) > 𝑥′

𝑑
(𝑡).

We prove Theorem 8 by showing that for 𝑑 ≥ 1 and 𝑡 ∈ [0, 1],

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 < 0.

This then, with Lemma 16 implies 𝜕
𝜕𝑑
𝑥′
𝑑
(𝑡) > 0 so 𝑥′

𝑑
(𝑡) is strictly increasing in 𝑑 and for

any ℓ > 𝑑, we have 𝑥′
ℓ
(𝑡) > 𝑥′

𝑑
(𝑡) with 𝑡 ∈ (0, 1] which completes the proof.

Theorem 9. For all 𝑑 ≥ 1, there exists 𝑐(𝑑) > 1 such that for all ℓ > 𝑑 and 𝑡 ≥ 𝑐(𝑑), 𝑥′
ℓ
(𝑡) <

𝑥′
𝑑
(𝑡). Furthermore, 𝑐(𝑑) → 1 as 𝑑 → ∞.

Similarly, to prove Theorem 9, we show that for any 𝑑 ≥ 1 one can appropriately

construct a 𝑐(𝑑) > 1 such that 𝑐(𝑑) → 1 as 𝑑 → ∞ and for all 𝑡 ≥ 𝑐(𝑑),

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 > 0.

Again, this shows that 𝑥′
𝑑
(𝑡) is strictly decreasing in 𝑑, so that for any ℓ > 𝑑, we must have

𝑥′
𝑑
(𝑡) > 𝑥′

ℓ
(𝑡) if 𝑡 ≥ 𝑐(𝑑) (since 𝑐(𝑑) is decreasing so also 𝑡 ≥ 𝑐(ℓ)).

1.3.3 Discrete Market: Probability of Being Matched

In this section we prove the main results in the discrete market, often bringing back

results from the continuous market via an application of Lemma 7.

The following theorem succinctly states that all students in a balanced market (where

𝑖 ≤ 𝑛) prefer longer lists for 𝑛 large.

Theorem 1. Let 𝑑, ℓ ∈ N with ℓ > 𝑑. For every 𝑛 large enough and 𝑖 ≤ 𝑛, we have

P
(
𝑀
𝑛,ℓ
𝑖

= 1
)
> P

(
𝑀
𝑛,𝑑
𝑖

= 1
)
. (1.1)
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Proof. This follows directly from Theorem 8 and Lemma 7. □

Lemma 17. Let 𝑑, ℓ, 𝑛 ∈ N with 𝑑 ≤ ℓ ≤ 𝑛. For every 𝑗 ∈ [𝑛] and every 𝑖 = 1, 2, . . . , we have:

P
(
𝐻
𝑛,ℓ
𝑗
(𝑖) = 1

)
≥ P

(
𝐻
𝑛,𝑑
𝑗

(𝑖) = 1
)
.

Proof. We have

P
(
𝐻
𝑛,𝑑
𝑗

(𝑖) = 1
)
=

1
𝑛

𝑛∑︁
𝑟=1

P
(
𝐻𝑛,𝑑
𝑟 (𝑖) = 1

)
(by symmetry)

=
1
𝑛

𝑛∑︁
𝑟=1

E(𝐻𝑛,𝑑
𝑟 (𝑖))

=
1
𝑛
E

(
𝑛∑︁
𝑟=1

𝐻𝑛,𝑑
𝑟 (𝑖)

)
=

1
𝑛
E

(
𝑇
𝑛,𝑑
𝑖

)
.

Indeed, the random variable
∑𝑛
𝑟=1 𝐻

𝑛,𝑑
𝑟 (𝑖) counts the number of schools matched to a stu-

dent in positions {1, 2, . . . , 𝑖 − 1} in the the discrete market with 𝑛 schools, where ev-

ery student has a preference list of length 𝑑. This equals the number of students from

{1, 2, . . . , 𝑖 − 1} that are matched in that market, which is precisely 𝑇𝑛,𝑑
𝑖

. Recall from (1.3)

that

P
(
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
=


1 − (𝑘𝑑)

(𝑛𝑑)
, 𝑘 ≥ 𝑑,

1, otherwise.

It is clear from this expression that the left hand side monotonically increases in 𝑑: for

all 𝑖 = 1, 2, 3, . . . , a longer list length increases the probability that student 𝑖 is matched

to any school. Since 𝑇𝑛,𝑑
𝑖

=
∑𝑖−1
𝚤=1 𝑀

𝑛,𝑑
𝚤 we deduce that 𝑇𝑛,ℓ

𝑖
≥ 𝑇𝑛,𝑑

𝑖
in the sense of stochastic

dominance, and therefore in expectation. □

We next state a lemma that provides explicit bounds for the rate at which student 𝑡 = 1
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gets matched to a school, which we prove in Appendix A.3.

Lemma 18. For 𝑑 ≥ 1, we have
(

2𝑑+1
4𝑑+1

)1/𝑑
≤ 𝑥(𝑑, 1) ≤

(
𝑑+1

2𝑑+1

)1/𝑑
.

Theorem 3. Let 𝑑, ℓ ∈ N with ℓ ≥ 𝑑. There exists a cutoff 𝑐(𝑑) > 1 such that for every 𝑛 large

enough, and for all 𝑖 > 𝑛 · 𝑐(𝑑),

P
(
𝑀
𝑛,ℓ
𝑖

= 1
)
< P

(
𝑀
𝑛,𝑑
𝑖

= 1
)
.

Furthermore, 𝑐(𝑑) → 1 as 𝑑 → ∞.

Proof. This follows directly from Theorem 9 and Lemma 7. □

We finally prove a corollary of Lemma 18 that is an intriguing and surprising result.

Theorem 4. Let 𝑑 ∈ N. For every 𝑛 large enough, we have

𝑑

2𝑑 + 1
≤ P

(
𝑀𝑛,𝑑
𝑛 = 1

)
≤ 2𝑑

4𝑑 + 1
. (1.2)

In particular,

lim
𝑑→∞

lim
𝑛→∞

P(𝑀𝑛,𝑑
𝑛 = 1) = 1

2
.

Proof. From Lemma 7 and (1.4), we have P
(
𝑀
𝑛,𝑑
𝑛 = 1

)
→ 𝑥′

𝑑
(1) = 1 − 𝑥𝑑 (1)𝑑 . The claim

then follows from the bounds in Lemma 18. □

1.3.4 Discrete Market: Impact on Rank

In this section, we prove the following lemma.

Lemma 19. Let 𝑑 ∈ N. For every 𝑛 large enough, 𝑘 ≤ 𝑑 and 𝑖 ≤ 𝑛, we have

P
(
𝐾
𝑛,𝑑
𝑖

≤ 𝑘

)
− P

(
𝐾
𝑛,𝑑+1
𝑖

≤ 𝑘

)
≤

(
𝑑 + 2

2𝑑 + 3

) 𝑘/(𝑑+1)
−

(
2𝑑 + 1
4𝑑 + 1

) 𝑘/𝑑
.
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Proof. Fix 𝑑 ∈ N and 𝑘 ≤ 𝑑. Similar to Lemma 12, it is easy to show that probability of

getting matched to the first 𝑘 schools is given by

P
(
𝐾
𝑛,𝑑
𝑖

≤ 𝑘 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
= 1 − (𝑘/𝑛)𝑘 ±𝑂 (𝑑2/𝑛).

By Theorem 6, we have that 𝑛−1𝑇
𝑛,𝑑
𝑖

P→ 𝑥𝑑 (𝑖/𝑛), so

P
(
𝐾
𝑛,𝑑
𝑖

≤ 𝑘

)
− P

(
𝐾
𝑛,𝑑+1
𝑖

≤ 𝑘

)
→ 𝑥𝑑+1(𝑖/𝑛)𝑘 − 𝑥𝑑 (𝑖/𝑛)𝑘 .

Consider the function 𝑥𝑑+1(𝑡)𝑘 − 𝑥𝑑 (𝑡)𝑘 for 𝑡 ∈ [0, 1], and observe that

𝜕

𝜕𝑡

(
𝑥𝑑+1(𝑡)𝑘 − 𝑥𝑑 (𝑡)𝑘

)
= 𝑘 (𝑥𝑑+1(𝑡)𝑘−1𝑥′

𝑑+1(𝑡) − 𝑥𝑑 (𝑡)
𝑘−1𝑥′𝑑 (𝑡))

≥ 𝑘 (𝑥𝑑 (𝑡)𝑘−1𝑥′𝑑 (𝑡) − 𝑥𝑑 (𝑡)
𝑘−1𝑥′𝑑 (𝑡))

= 0.

The second last line follows from Theorem 8 since 𝑥′
𝑑+1(𝑡) ≥ 𝑥

′
𝑑
(𝑡) and 𝑥𝑑+1(𝑡) ≥ 𝑥𝑑 (𝑡) (from

the former since 𝑥𝑑+1(0) − 𝑥𝑑 (0) = 0).

We therefore have that 𝑥𝑑+1(𝑖/𝑛)𝑘 − 𝑥𝑑 (𝑖/𝑛)𝑘 is increasing in 𝑖, so applying Lemma 18,

we have

max
𝑖≤𝑛

(
𝑥𝑑+1(𝑖/𝑛)𝑘 − 𝑥𝑑 (𝑖/𝑛)𝑘

)
= 𝑥𝑑+1(1)𝑘 − 𝑥𝑑 (1)𝑘

≤
(
𝑑 + 2

2𝑑 + 3

) 𝑘/(𝑑+1)
−

(
2𝑑 + 1
4𝑑 + 1

) 𝑘/𝑑
,

which completes the proof. □

1.4 Numerical Experiments

We perform numerical experiments to evaluate how well our results generalize be-

yond the one-to-one Serial Dictatorship mechanism with uniformly random preferences.
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Schools not being sampled uniformly at random. In our first set of numerical exper-

iments we investigate the impact of students not picking their preference list uniformly

at random from all schools. In particular, we now assume there is some probability dis-

tribution 𝑝 : {1, . . . , 𝑛} → [0, 1] with
∑𝑛
𝑗=1 𝑝( 𝑗) = 1, where 𝑝( 𝑗) dictates the probability

that a student samples school 𝑗 at their turn. The case of uniform sampling occurs when

𝑝 ≡ 1/𝑛.

We experiment with five different distributions for 𝑝: a uniform distribution (𝑝1), two

types of Pareto-like distributions where students’ preference of schools is concentrated at

certain schools (𝑝2 and 𝑝3 with low, and high concentration respectively), a setting of two

classes (high demand and low demand) of schools (𝑝4), and finally a “degenerate” distri-

bution where students sample from the first half of schools almost exclusively (𝑝5). Note

that we would expect the last distribution to behave as if we had half as many schools,

so that students with 𝑖 ≤ 𝑛/2 would prefer longer lists and those arriving sometime after

this cutoff preferring shorter lists. The distributions are as follows:

𝑝1( 𝑗) =
1
𝑛
, 𝑝2( 𝑗) ∝

1
2 + 𝑗/𝑛 , 𝑝3( 𝑗) ∝

1
(1 + 𝑗/𝑛)10

,

𝑝4( 𝑗) ∝ 1 + 31{ 𝑗≤200}, 𝑝5( 𝑗) =


2/𝑛 − 1/100, 𝑗 ≤ 500,

1/100, 𝑗 > 500.

We perform all numerics with 𝑛 = 1000 schools, and compare the cases of 𝑑 being 1, 2, 4, 10,

and 20. All experiments are done with 100 000 repetitions.

Figure A.2 in Appendix A.4 shows the outcome of these experiments. We graph first

the distribution of 𝑝(·) for all schools on the left, then the proportion of schools taken

by students up to student 𝑖 in the middle, and the probability that a given student 𝑖 is

matched to a school on the right.

Our main thesis—that all students in balanced markets prefer long lists—holds under
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all distributions other than the degenerate one (which is almost equivalent to having half

as many schools). In particular, P(𝑀𝑛,𝑑
𝑖

= 1) increases in 𝑑 under all distributions other

than the degenerate, and in that latter case, students soon prefer shorter lists as suggested

by our Theorem 3. We conclude that our main results, Theorem 1 and Theorem 3, seem

to be robust to i.i.d. sampling via reasonable non-uniform distributions.

Schools with multiple seats. In Section 1.2.4 and Appendix A.2 we discuss the exten-

sion of the discrete and continuous models to the case when schools have 𝑞 ∈ N seats

with 𝑞 > 1. We performed numerical experiments to verify Conjecture 1.2.4. To do so,

we computed numerical solutions to the differential equations describing the continuous

model using the Euler method with step size 5 × 10−5, and compared the probability of

getting matched for successive values of 𝑑 ∈ N. We verified that the conjecture holds for

all pairs of 𝑞 = 1, 2, . . . , 20 and 𝑑 = 1, 2, . . . , 15. This leads us to believe that the conjecture

holds for all 𝑞 ∈ N and 𝑑 ≥ 1. In Appendix A.4 we show some plots of the resultant

output.

1.5 Conclusions

In this chapter, we investigated the impact of truncating preference lists in a two-sided

matching market where students choose schools following a Serial Dictatorship order.

Our main result is that if the market is balanced, all agents increase their probability of

being matched when lists are longer, and if the market is not balanced students after the

balance point quickly prefer shorter lists. These results are shown for preference lists that

are sampled uniformly at random and school quotas equal to 1 and then shown to hold

numerically for more complex preferences and larger quotas. We believe these valuable

insights can be used to support the expansion of the length of preference lists, which

are often set to small values. Investigating similar questions for other mechanisms is a

relevant open question.
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Chapter 2: Mitigating the Impact of Systemic Bias in School Choice

Joint work with Yuri Faenza, Swati Gupta, and Xuan Zhang.

2.1 Introduction

Disparity in opportunities plays a major role in access to education at different levels

of the educational pipeline [38]. It is known that outcomes of middle school admissions

dictate high school admissions, which in turn impact pathways to higher education [39].

Selection starts much earlier however, with gifted and talented programs screening stu-

dents as young as 4 years old, but with these tests often seeing few students from ethnic

minorities succeeding [40]. Our work is motivated by high school admissions in large

public school districts such as New York City (NYC). NYC has an extensive public school

system with current enrollment of over one million students, where every year roughly

80,000 students wish to join one of the 700 high school programs. By far, the most sought

after public schools are the so-called Specialized High Schools (SHSs) which by law se-

lect candidates solely based on their score on the Specialized High School Admissions

Test (SHSAT) [41]. Such scores are known to be impacted by socioeconomic status of stu-

dents [42] and test preparation received in middle schools [39, 43]. Since ethnic minorities

tend to cluster in middle schools of lower quality [44], they are already at a disadvantage

in high school admissions, which is then reflected as under-representation in higher ed-

ucation programs [45]. The results is a massive filtering effect in high school admissions:

50% (resp. 80%) of students admitted to the SHSs come from only the top 5% (resp. 15%)

of middle schools [39].

The goal of this work is to investigate data-driven interventions at the middle school
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level to reduce this filtering effect. An extensive literature has focused on doing so by

proposing changes to admissions policies themselves (see Section 2.1.3). That approach

however, has multiple downsides. For one, simply “fixing” the admissions process to

boost under-represented students does not fundamentally prepare those students to per-

form well once admitted. Another downside of such admissions policies is that they are

seen as unfair by many, and there are significant political and legislative hurdles to imple-

menting criteria that take the disparate backgrounds of students into account during the

admissions process. For example, in 2003, an attempt by the University of Michigan to

add 12 points for “diversity” on a 150 point scale in an effort to promote admissions of un-

derrepresented ethnic minorities was met with a lawsuit, which was ultimately decided

not in favor of the university [46]. Similarly, a 2019 plan supported by the then mayor of

New York City to eliminate the SHSAT—criticized by some as inequitable due to unequal

access to test preparation—failed to gain enough support, and was not approved by the

New York State Senate [47]. A possibly more appropriate mechanism could therefore be

for the city to afford free test preparation assistance to some under-represented students

to help them compete more favorably with those students with ample resources.

In this work, we take a completely different operations perspective. We focus on cen-

tralized pre-admission interventions, a fundamentally meritocratic approach that does

not involve an unfair or legally dubious change in the admissions criteria. We introduce

a matching model of schools and students where some students (that we call disadvan-

taged) are not evaluated at their true potential, but at a strictly lower level. We then in-

vestigate both theoretically and empirically the impact of such differences in treatment,

and investigate interventions to counter it. These interventions are in the form of vouchers

targeted at certain disadvantaged students, affording them access to supplemental in-

struction: thereby providing them real support in order to perform closer to their innate

ability. Our main contribution is a randomized policy for voucher allocation that is in-

dividually fair, incentive compatible and (by targeting average disadvantaged students)
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can substantially reduce the mistreatment they experience, as measured by various met-

rics. We next present the setup, intermediate results, and experiments leading to our main

contribution.

2.1.1 Motivation

In order to present our mathematical model, we first introduce the characteristics and

mechanism for SHSs admissions in NYC. SHSs admit students uniquely based on the

student’s score on the highly competitive SHSAT. The NYC Department of Education

(DOE) acknowledges that there is a disparity in students’ abilities to prepare for the test,

and so classifies some students as disadvantaged. This classification uses criteria such as

their household income and the middle school they attended, which together constitute a

proxy for socioeconomic status [48]. Following the DOE’s definition, we divide students

who take the SHSAT into two groups: non-disadvantaged (𝐺1) and disadvantaged (𝐺2).

We find that the distribution of SHSAT scores1 of the two groups (Figure 2.1a) exhibit a

significant distributional shift, but match closely (as measured by Wasserstein distance) if

the scores of disadvantaged students are adjusted by a multiplicative factor of 1
𝛽
≈ 1

0.88 ≈

1.13 (Figure 2.1b), or an additive factor of 𝛾 = 49 points (Figure 2.1c).

(a) raw SHSAT scores (b) multiplicative shift (c) additive shift

Figure 2.1: Distribution of SHSAT scores for students in groups 𝐺1 and 𝐺2 for the 2016–17 academic year.
Scores between the groups align closely after multiplicative shift of 𝛽 ≈ 0.88, or under an additive shift of
49 points.

While the exact mechanism of action and its causal factors are both unknown and
1We thank the NYC DOE for providing us this data under a non-disclosure agreement.
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hotly debated in the literature2, the consensus stands that performance gaps between

socioeconomic groups stem not from differences in innate ability, but from disadvantages

that hinder students’ potential [49]. It is therefore natural to postulate that the distribution

of innate ability ought to coincide when students are arbitrarily partitioned into groups

based on their socioeconomic status.

Motivated by these observations and the literature on performance gaps between so-

cioeconomics groups, we consider the following model. The true potential (unobserved

innate ability) 𝑍 of a student is sampled from the Pareto distribution3, while the perceived

potential (observed performance) 𝑍̂ is equal to 𝑍 for 𝐺1 students and to 𝛽𝑍 for 𝐺2, stu-

dents where 𝛽 ∈ (0, 1) is some bias factor. We choose this bias model for its computational

tractability and because it gives a good approximation to the SHSAT score distribution of

admitted students (see Figure 2.2); we discuss the implications of using different models

of bias in more detail in Section 2.6.

Figure 2.2: Distribution of estimated true potentials of students who score high enough to receive an offer
from a SHS under the multiplicative model. The best fitting Pareto distribution has parameter 𝛼 = 8.9.

2Various mechanisms for the existence of this disparity have been debated and studied, and it is difficult
to establish causality. We appreciate that this is a contentious issue and do not take a strong stance on it,
but do note that implementers may adjust the bias factor and other model parameters to better fit their data
and model of bias.

3The choice of the Pareto distribution to model potentials is inspired by a body of empirical work, see
for example [50] on the achievements of individuals in many professions.
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In our model, schools rank students based on their perceived potentials 𝑍̂ . To be able

to find tractable policies, we assume in our theoretical analysis that all students share the

same ranking of schools (for example based on US News Rankings). This assumption

abstracts out considerations that may be important for students such as proximity of a

school [51], limits on the length of preference lists [9], or strong preferences of students

for certain high schools4. However, we later argue experimentally, by dropping this as-

sumption and applying it to the case of stable matching, that our qualitative results are

robust to relaxations of our stylized model.

We then study the impact of interventions that we call vouchers, in the form additional

resources (e.g. tutoring, test prep, or a scholarship) allocated to certain disadvantaged

students. In our model, such a voucher enables a disadvantaged student to unlock their

innate ability and perform at their true potential. We therefore refer to this process as

debiasing. This model of intervention by additional resources is motivated by real world

examples where supplemental instruction such as tutoring has been shown to be effec-

tive to close the performance gap, see for example [52]. However, such interventions

are costly, and so they cannot be offered to everyone. This leads to a natural resource

allocation question.

2.1.2 Our Contributions

We investigate the impact that bias has on both disadvantaged and non-disadvantaged

students on two opposing measures of aggregate mistreatment, then quantify the effect

that these interventions have on the mistreatment, and identify the best populations they

should be targeted to. We discuss qualitative results in the real-world context of New York

City Specialized High Schools by first estimating the parameters of our model from the

data, and then evaluating the effect of various interventions on the actual stable matching

outcomes. Our key findings are as follows:

4For instance in the 2016–17 SHSAT cohort, 56% of students indicated Stuyvesant or Brooklyn Tech as
their first preference, with 76% naming at least one of the two in their top two preferences.
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1. Asymmetric impact and minority effect: We observe that under reasonable as-

sumptions on the parameters (such as disadvantaged students constituting a mi-

nority), the impact of bias on 𝐺2 (disadvantaged) students is much bigger than

the slight advantage that 𝐺1 students obtain (see Figure 2.3 and Figure 2.7). More-

over, at a societal level, the presence of bias excludes most disadvantaged students

from top schools (see Appendix B.3 and Figure B.1 therein), which explains a phe-

nomenon often seen in the real world [53].

2. Deterministic Centralized Interventions: We next study the impact of determinis-

tic voucher allocation. To measure the impact of bias on disadvantaged students,

we define the mistreatment of a student as the difference in the ranking of the school

the disadvantaged student gets matched to under bias compared to the unbiased

setting. We study mechanisms to allocate vouchers to reduce aggregate measures of

mistreatment, which we interpret as measures of (group) fairness. We first show that

under two such very different measures, maximum benefit is achieved by provid-

ing vouchers to average-performing (rather than top-performing) disadvantaged

students, assuming that their abilities are Pareto-distributed. These findings chal-

lenge existing scholarship/aid allocation mechanisms, addressing one of the key

questions facing policy makers on how to distribute resources.

3. Incentive Compatible Voucher Distribution: We next observe that the determinis-

tic allocation of vouchers to average performers creates an incentive for some top

students to underperform. More generally, we show that the only deterministic pol-

icy that is incentive compatible distributes vouchers to top students. However, this

policy has a small impact on reducing aggregate mistreatment. We therefore dis-

cuss two classes of mechanisms for randomly allocating vouchers that are incentive

compatible. In particular, one of them (that we term Proportional to Mistreatment)

still favors middle-performing students while guaranteeing that the maximum ex-
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pected mistreatment is lower than under any deterministic policy. The other class

of random policies we study is incentive compatible under general potential dis-

tributions. These policies have the additional benefit of being individually fair (in

the sense of a Lipschitz condition) so that the probability of receiving a voucher for

students with similar potentials is similar.

4. Alternate Models of Bias: We study variations of our simple multiplicative bias

model, and its limitations in the context of the literature on discrimination. We

quantify the impact of applying our model to contexts where bias arises due to a

more sophisticated process, and discuss experimental results quantifying efficiency

loss from such model misspecification. We then extend our results from the case

of uniform multiplicative bias to the case of uniform additive bias. We show that

our main takeaways continue to hold under an additive model or when the simple

multiplicative model is applied under moderate levels of model misspecification.

5. Experimental validation: We then validate our theoretical results on admissions

data to the SHSs for the academic year 2016–17. Although our model assumes that

students have homogeneous preferences, we compute the stable matching using

their SHSAT scores and reported heterogeneous preferences. We find that our key

theoretical takeaways are still valid under relaxation of the homogeneous prefer-

ence assumption: for instance, the shape of students’ mistreatment resembles the

prediction of our model (including the fact that average performers are the most

mistreated) and that our voucher distribution program improves the mistreatment

across the board. We further show that the best ranges of students to give vouchers

to obtained via our theory, are qualitatively similar to the best empirically found

ranges under the real data with heterogeneous preferences. This leads to our policy

insights, which we discuss next.
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6. Policy Insights: Motivated by the goal of maximizing the impact of limited re-

sources, in this work we propose that additional training and resources should be

offered to average performers rather than top performers. At a high level, the two

assumptions that lead to this result are that (1) the concentration of students who

perform around the average, compared to a much smaller cohort who make up the

top performers, and (2) that given enough opportunities and support, the perfor-

mance of the two cohorts of students ought to be indistinguishable. The key phe-

nomenon that arises due to these assumptions is that a small deviation in an average

disadvantaged student’s perceived performance leads to a significant change in the

rank of the school they are matched to.

(1) is a key characteristic of many common distributions, including the Pareto dis-

tribution investigated in this paper. (2) is supported by education policy research

and discrimination literature which shows that additional resources can positively

impact low achieving student groups. Our work complements this line of work

through mathematical analysis in order to optimally target limited resources.

The current rationale behind most scholarship programs is to reward top perform-

ers, driven by a desire for meritocracy, and to drive better top performance by creat-

ing competition. Our analysis, on the other hand, suggests that if the goal is to maxi-

mize positive impact or more equitable outcomes for disadvantaged students, more

support should be given to average performers. Moreover, this can be achieved

with an incentive compatible randomized policy tailored to the distribution of po-

tentials. However, in the case that truly nothing is known about the distribution

of student potentials (so, in particular, condition (1) cannot be assumed), we show

that the only policies guaranteed to be incentive compatible are those where the

probability of receiving vouchers increases with the perceived performance.

The rest of the chapteris organized as follows. In Section 2.1.3 we review the prior liter-
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ature related to this work. In Section 2.2, we formally introduce our mathematical model

for a continuous matching market with bias. In Section 2.3 we analyze the effects of bias

on both disadvantaged and non-disadvantaged students, introducing the key concepts of

displacement and mistreatment. We then consider deterministic policies for reducing such

bias via a centralized approach in Section 2.4, quantifying their impact on students and

discussing various notions of (group) fairness. In particular, we present two theorems that

quantify the optimal deterministic debiasing sets under different measures of fairness. In

Section 2.5, we show that such deterministic policies fail to be incentive compatible and

individually fair, and introduce the randomized assignment of vouchers to satisfy these

fairness conditions, and show that such randomized policies achieve a lower maximum

mistreatment than their deterministic counterparts. In Section 2.6 we discuss variations

on models of bias, quantifying the impact of applying our stylized model to contexts with

more intricate forms of bias, and extending our results on deterministic debiasing to an

additive model. In Section 2.7 we apply our policies to the real-world dataset of SHSs

admissions for the 2016–17 cohort, then close with a discussion in Section 2.8.

2.1.3 Related Work

The most common way to model admissions to schools is through a two-sided market,

consisting of schools and students respectively, where each agent has an ordered prefer-

ence over agents acceptable to them on the other side of the market. This model has been

used to match doctors to hospitals by the National Residency Matching Program since

the 1960s, and it has since gained widespread notoriety when [3] used it to reform the

admissions process for New York City public high schools in 2003. Since then, admission

decisions in NYC have been centralized and are (essentially) governed by the classical

Gale-Shapley Deferred Acceptance algorithm [1]. The simplicity of the algorithm, as well

as the drastic improvement in the quality of the matching it provides when compared

to the pre-2003 method have led to academic and public acclaim, and spurred applica-
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tions in many other systems (see, e.g. [54]). However, this mechanism does not naturally

address problems like school segregation and class diversity, which have worsened and

become more and more of a concern in recent years [55, 56, 57, 58]. The scientific commu-

nity and policy-makers have reacted in various ways such as by modifying the mathemat-

ical model to incorporate group-specific quotas or proportionality constraints [59, 60, 61].

However, there is evidence that adding such constraints may even hurt the very students

they were meant to help [62, 63, 64], and the question of legal challenges abounds.

There is a long line of work on affirmative action policies in theory and in practice [65,

66, 67, 68, 64, 38]; and alternatives such as the “top 10%” admissions criteria implemented

in Texas [69]. Substitute mechanisms such as the top 10% criteria deviate significantly

from current practice bar esoteric implementations, and it is unclear whether such crite-

ria improve the status quo or worsen it. For instance [70] found a significant negative

impact on the admissions rates of minorities if affirmative action policies for college ad-

missions were replaced by top 𝑥% rules. We take a completely different approach to

improving the outcomes for disadvantaged students by voucher distribution, which will

naturally help with the downstream impacts in the education pipeline towards economic

opportunities [71, 72].

Our work is somewhat related to an increasing body of work on test-taking itself,

in particular policies that make tests optional or allow applicants to take tests multiple

times. Test-optional policies are typically studied in the context of college admissions

(see e.g. [73, 74]), but are largely not adaptable to public high school admissions due to

significant differences in admissions dynamics5. A recent study in [75] shows the impact

of being able to retake SAT exams and that reporting all the scores leads to more equi-

5For better or worse, admissions to the most sought after colleges are administered by large admissions
offices staffed to evaluate nuanced applications, with significant autonomy and shielding from scrutiny.
Almost all public school admissions processes on the other hand are deeply scrutinized by the public,
and choose simple mechanisms with high explainability, up to the extreme case of SHS admissions being
dictated by law. Further, colleges tend to be selective and have decentralized admissions processes, whereas
public schools must provide education for all, through a centralized assignment process.
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table outcomes as well as a more accurate signal for colleges6. Further, a recent study

[77] focused on the design of a fair admissions process by identifying conditions where

standardized tests should be dropped, while our paper mostly focuses on pre-admissions

policies. We finally remark that our proposed interventions are politically and practically

palpable as they do not require changing the admissions criteria (a significant hurdle to

implementation [78]). In New York for instance, this would itself require changing state

law (Hecht-Calandra Act).

Further, any admissions policy is susceptible to manipulation by applicants. Recent

work by [79] has considered strategic behavior of students in a classification setting,

where each student can expend some bounded amount of resources to improve their

test-score performance and convert a “reject" decision to an “accept" decision. The school

can provide subsidies to students to reveal their true potential. They further identify

cases where providing a subsidy can make the group receiving the subsidy worse-off.

Though our work considers a completely different model, we also find theoretical condi-

tions under which voucher distribution can in fact worsen some fairness metrics over the

disadvantaged groups, and investigate strategic behavior of students, see Section 2.4 and

Section 2.5.1.

Various selection problems have been investigated in models with a multiplicative

bias introduced by [80] (including [81, 82, 83, 84]), but to the best of our knowledge, this

paper is the first to investigate it in the role of school admissions. There exists some

literature such as [85, 86] on understanding the impact of family backgrounds on student

preferences, but this is orthogonal to the questions we study here. Our work complements

existing work in the education and policy literature which shows additional resources

can positively impact low achieving student groups [87, 88], in particular, [52] studies the

impact of supplemental instruction on disadvantaged students.

Lastly, our work is related to the modeling of bias and discrimination itself, which is

6The DOE allows students to take the SHSAT both in their 8th grade and in their 9th grade with slightly
different tests, but only about 6% of test takers are in 9th grade [76].
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an active area of research in economics [44, 89, 90]. The DOE is required by law to use

only the SHSAT score to decide admissions to the SHSs, and so does not directly dis-

criminate against any student based on group membership (since it does not take this

information into account in the decision). Instead, the discrepancies in performance that

arise in this setting are caused by pre-existing bias and discrimination at earlier stages in

the educational pipeline, and so specifying the process by which such bias arises is rele-

vant. Our model of uniform multiplicative bias bears some resemblance to what is known

as taste-based discrimination in the literature: models where agents hold uniform dis-taste

towards members of some group. In the modern world, many guardrails exist to dis-

bar and discourage direct taste-based discrimination in consequential decisions such as

in school admissions (e.g. based on “protected attributes”). Therefore, while taste-based

discrimination models make some attempt to describe why bias or prejudice come to be,

more modern work commonly takes bias to be primarily of the statistical discrimination

kind [91]. While these models do not explain why initial bias has arisen, they posit that

the processes that beget discrimination can be explained via economically rational behav-

ior of individual agents [92]. In particular, such phenomena may arise even when agents

do not directly imbue dis-taste towards some group, but due to distributional differences

between groups. A common feature in such models is that the decision maker relies on

some signal that is noisier and hence a less accurate predictor of the true characteristic

of interest (such as innate ability) for discriminated populations [93]. For instance, if the

variance of test scores of students in the disadvantaged group are higher than those of

the non-disadvantaged group, then a decision maker facing two students with the same

above average score but different group membership may be inclined to choose in favor

of the non-disadvantaged student, rationally believing their score to be a more accurate

predictor of their performance (and the disadvantaged student’s score more likely to be

a fluke). We refer the reader to the survey in [94]. We address such bias processes with

higher noise in Section 2.6 and Appendix B.7.
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2.2 A continuous matching market

We now introduce our stylized matching model for school choice. For tractability,

we follow a recent trend in the literature and assume both schools and students to be

continuous sets (see Appendix B.1 for a discussion on this choice). We denote the set of

students by Θ and for each student 𝜃 ∈ Θ, endow them with a true potential 𝑍 (𝜃) sampled

from some probability distribution. We interpret this true potential as the innate ability of

student 𝜃. For the rest of this section, we assume 𝑍 (𝜃) ∼Pareto(1, 𝛼) (note that all students

then have true potentials exceeding 1). This assumption is relaxed in Section 2.5.1 where

we consider randomized voucher programs under different distributional assumptions.

We occasionally identify a student’s true potential 𝑍 (𝜃) with 𝜃, the student itself.

We denoted the mass of schools by the unit interval, [0, 1], and assume that all stu-

dents rank schools in the same order with school 0 the best, and school 1 the worst.

Schools on the other hand rank students uniquely based on their potential. This con-

veniently lets us identify the matching with the complementary cumulative distribution

function (ccdf) of the students’ potentials. That is, let 𝜇 denote the matching when schools

rank students according to their true potentials, then student 𝜃 gets matched to school

𝜇(𝜃) = 1 − 𝐹 (𝑍 (𝜃)) where 𝐹 (𝑡) is the cumulative distribution function (cdf) of the dis-

tribution of student potentials. For convenience, we denote the ccdf by 𝐹̄ = 1 − 𝐹, so

𝜇(𝜃) = 𝐹̄ (𝑍 (𝜃)). In the Pareto case, we get 𝜇(𝜃) = 𝑍 (𝜃)−𝛼.

In our model, however, not all students are perceived at their true potential. Instead,

we consider the case where a proportion 𝑝 ∈ [0, 1] of students is disadvantaged and they

perform at a level lower than their innate ability due to some kind of bias. Formally, we

consider the student body to be composed of two groups: a proportion 1 − 𝑝 of non-

disadvantaged students 𝐺1, and a proportion 𝑝 of disadvantaged students 𝐺2. We let 𝑍̂ (𝜃)

denote the perceived potential of student 𝜃 ∈ Θ. While students in 𝐺1 are perceived at their

true potential, we now assume that the perceived potential of disadvantaged students are
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biased by a constant multiplicative factor 𝛽 ∈ (0, 1]. That is, if 𝜃 ∈ 𝐺2 then 𝑍̂ (𝜃) = 𝛽𝑍 (𝜃);

otherwise, if 𝜃 ∈ 𝐺1 then 𝑍̂ (𝜃) = 𝑍 (𝜃).

Let 𝐹1 and 𝐹2 be the cdfs for the perceived potentials of students in 𝐺1 and 𝐺2, respec-

tively, then

𝐹1(𝑡) = 1 − 𝑡−𝛼; 𝐹2(𝑡) = 1 − 𝛽𝛼𝑡−𝛼 .

Note that the domain of 𝐹1 is [1,∞), whereas the domain of 𝐹2 is [𝛽,∞). We now consider

the matching of students to schools under this biased regime (when schools use perceived

potentials to rank students), which we denote by 𝜇̂. For a student 𝜃 ∈ Θ, 𝜇̂(𝜃) is equal to

the mass of students whose perceived potentials exceed 𝑍̂ (𝜃), and one can compute

𝜇̂(𝜃) =


(1 − 𝑝)𝐹̄1(𝑍̂ (𝜃)) + 𝑝𝐹̄2(𝑍̂ (𝜃)) if 𝜃 ∈ 𝐺1,

(1 − 𝑝)𝐹̄1(𝑍̂ (𝜃) ∨ 1) + 𝑝𝐹̄2(𝑍̂ (𝜃)) if 𝜃 ∈ 𝐺2,

(2.1)

where ∨ is the maximum operator. Note that when 𝛽 = 1 (no bias), (2.1) equals 𝜇(𝜃) for

all 𝜃 ∈ Θ.

Formally, we define a matching in this market to be a surjective measurable function

𝛾 : Θ → [0, 1], such that the mass of students mapped to a measurable set of schools

𝑆 ⊆ [0, 1] coincides with the standard Lebesgue measure 𝜈 of 𝑆. That is, any surjective

function 𝛾 from Θ to [0, 1] is a matching if

𝜈(𝛾−1(𝑆)) := (1 − 𝑝)
∫
𝜃∈𝛾−1 (𝑆)∩𝐺1

𝑑𝐹1(𝑍̂ (𝜃)) + 𝑝
∫
𝜃∈𝛾−1 (𝑆)∩𝐺2

𝑑𝐹2(𝑍̂ (𝜃))

is equal to the standard Lebesgue measure of 𝑆 for all measurable 𝑆 ⊆ [0, 1]. One can

easily check that 𝜇 and 𝜇̂ defined above are matchings.

Example 20. Suppose 𝛼 = 3 so student scores are sampled from Pareto(1, 3). Suppose Maya ∈ 𝐺2

scores 𝑍 (“Maya”) = 1.4, and Lisa ∈ 𝐺1 scores 𝑍 (“Lisa”) = 1.3. In the unbiased setting, Maya
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gets matched to schoool 𝐹̄ (𝑍 (“Maya”)) = 1 − (1 − 1/(1.43)) ≈ 0.3644 while Lisa gets matched to

𝐹̄ (𝑍 (“Lisa”)) = 1 − (1 − 1/(1.33)) ≈ 0.4552. On the other hand, in the biased case with 𝛽 = 0.9,

we have 𝑍̂ (“Maya”) = 1.26, while 𝑍̂ (“Lisa”) = 1.3. If 𝑝 = 0.2, we have that Maya and Lisa are

matched to schools

𝜇̂(“Maya”) = 0.4729 and 𝜇̂(“Lisa”) = 0.4305, (2.2)

respectively to a significantly worse (slightly better) school than they used to in the setting without

bias. Note that Lisa has a smaller true potential than Maya but is assigned to a better school in the

biased setting.

2.3 Impact of Bias on Students

Our first goal is to understand how much bias affects agents in the market. In par-

ticular, we would like to quantify the loss of efficiency for students7 when students are

matched to schools under 𝜇̂ instead of 𝜇. Formally, we define the displacement and mis-

treatment of a student as follows.

Definition 21 (Displacement and mistreatment). Let 𝜃 ∈ Θ, let 𝜇 be the matching in the

absence of bias (using 𝑍 (𝜃)), and let 𝛾 be some other matching. We define

1. the displacement of 𝜃 under 𝛾 as disp𝛾 (𝜃) = 𝛾(𝜃) − 𝜇(𝜃); and

2. the mistreatment of 𝜃 under 𝛾 as 𝑚𝛾 (𝜃) = max(0, 𝛾(𝜃) − 𝜇(𝜃)).

We often drop the subscript when the matching at hand is clear from context.

Note that if 𝜃 ∈ 𝐺1, the displacement under 𝜇̂ is non-positive, and if 𝜃 ∈ 𝐺2, it is

non-negative. The displacement for 𝜇̂ can be calculated using the formulae for 𝜇 and 𝜇̂

in (2.1).
7In Appendix B.3, we take the schools’ perspective and show that there is effectively no loss of efficiency

for schools under this model, creating little incentive for them to intervene at the individual school level.
We also measure there the diversity of the admitted cohort in our model.
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Proposition 22. For any student 𝜃 ∈ 𝐺2, the displacement under 𝜇̂ is given by:

disp𝜇̂ (𝜃) =


(1 − 𝑝) (𝑍 (𝜃))−𝛼 (𝛽−𝛼 − 1) if 𝑍 (𝜃) ≥ 1

𝛽
,

(1 − 𝑝) (1 − (𝑍 (𝜃))−𝛼) if 𝑍 (𝜃) ≤ 1
𝛽
.

For any student 𝜃 ∈ 𝐺1, we have disp𝜇̂ (𝜃) = −𝑝 (1 − 𝛽𝛼) (𝑍 (𝜃))−𝛼 . Thus, the maximum dis-

placement of (1− 𝑝) (1− 𝛽𝛼) is experienced by a 𝐺2 student with true potential 1/𝛽; and the most

significant negative displacement of −𝑝(1− 𝛽𝛼) is experienced by a 𝐺1 student with true potential

1.

Figure 2.3: Schools students are matched to under 𝜇̂ and 𝜇. The green dotted line is a line of slope one,
representing the place a student should be placed if there were no bias in the system.

One can interpret this result intuitively as follows. Starting from the top school, 𝐺1

students gradually take up more seats than they would without bias, and thus gradually

push 𝐺2 students to worse schools. This process stops once all 𝐺1 students are matched

to schools, and the only students that remain to be matched are 𝐺2 students. As a result,

in the lowest ranked schools, all students are 𝐺2 students. Hence, the difference in ranks

of the schools 𝐺2 students are matched to decreases towards the end. Figure 2.3 gives a

pictorial illustration of Proposition 22. From there, one can clearly see how the most mis-

treated students are average performers. This intuition will be fundamental in devising

policies to counter the effect of bias.
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2.4 Deterministic Centralized Interventions

In this section, we discuss deterministic interventions, where the central planner is

able to assign vouchers to some targeted subset of disadvantaged students to debias them

in order to reduce mistreatment. When a disadvantaged student is chosen for such a

voucher (in the form of supplemental instruction, test prep, a scholarship, or similar), we

assume that they receive the support they need to realize their innate ability and perform

at their true potential by the time their performance is measured (e.g. when they take the

SHSAT). Such interventions are costly, so deciding which set of students to assign these

vouchers to in order to mitigate bias as much as possible subject to some budget constraint

becomes a key question. These policies are deterministic, and the decision of whether to

assign a voucher to a student (hence, debias them) depend only on the potential of the

students. In the next section, we will discuss randomized policies where the decisions

will also depend on the outcome of a random coin flip.

Deterministic Debiasing Sets: Formally, the planner chooses some measurable subset

𝑇 ⊆ [1,∞) of disadvantaged students to debias, which we call a deterministic debiasing set

(DDS). We let 𝑐 ∈ [0, 1] be the budget of the central planner, then define T (𝑐) to be the

set of all DDSs respecting this budget, that is the set of all measurable 𝑇 ⊆ [1,∞) with∫
𝑇
𝑑𝐹1 ≤ 𝑐. Additionally, let T 𝑐 (𝑐) ⊆ T (𝑐) be the set of such sets that are also closed and

connected (i.e. they are intervals [𝑎, 𝑏] ⊆ [1,∞) that satisfy 𝐹1(𝑏)−𝐹1(𝑎) ≤ 𝑐). If 𝜃 ∈ 𝑇 , then

we set 𝑍̂ (𝜃) = 𝑍 (𝜃), so that student performs at their true potential. Let 𝜇𝑇 : Θ → [0, 1]

be the matching after 𝐺2 students whose true potentials lie in 𝑇 have been debiased8.

Write 𝑚𝑇 for the mistreatment under 𝜇𝑇 as in Definition 21. The mistreatment is the drop

in the rank of the school the student is matched to (if this drop is positive): a student 𝜃

has mistreatment equal to 0 if they are assigned to a school at least as good as 𝜇(𝜃). In

8In this section we assume the debiasing decision is based on true potentials. In the case of deterministic
one-to-one bias, the distinction is not important, but we later discuss debiasing on perceived potentials
when it becomes relevant.
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the following, we evaluate a voucher distribution by its effect on the mistreatment of 𝐺2

students, since only 𝐺2 students may experience strictly positive mistreatment. It is easy

to see that after the interventions, no student 𝜃 ∈ 𝐺1 will be matched to a school worse

than 𝜇(𝜃). This is because our interventions focus on helping (certain) 𝐺2 students reveal

their true potentials, hence for any 𝐺1 student 𝜃, no student with potential lower than

𝑍 (𝜃) can have a perceived potential higher than 𝑍̂ (𝜃) = 𝑍 (𝜃).

Fairness Considerations: Finding a set of students to allocate vouchers to is a resource

allocation problem with natural fairness considerations that guide the choice of the mea-

sures to be optimized9. For the cohort of disadvantaged students, we take the view of

finding a distribution of vouchers so that the mistreatment across 𝐺2 students is as bal-

anced or equitable as possible. We analyze two representative fairness measures in this

regard: (1) the positive area under the mistreatment curve over all disadvantaged students,

and (2) the maximum mistreatment experienced in this cohort. The former is the continu-

ous 𝐿1 norm (under the 𝐹1 measure) of the mistreatment after voucher allocation, or the

positive area under the curve (PAUC), which we denote by 𝜎. The latter is the continuous

𝐿∞ norm of mistreatment and we denote it by 𝑚𝑚. Formally, for a matching 𝛾, we define

𝜎(𝛾) :=
∫
Θ

𝑚𝛾 𝑑𝐹1 = ∥𝑚𝛾 (𝜃)∥1, (2.3)

𝑚𝑚(𝛾) := sup
𝜃∈Θ

𝑚𝛾 (𝜃) = lim
𝑝→∞

(∫
Θ

��𝑚𝛾 ��𝑝 𝑑𝐹1

)1/𝑝
= ∥𝑚𝛾 (𝜃)∥∞. (2.4)

These notions of fairness have been axiomatically established and are well-studied in

the literature. For example, the min-max notion of fairness has been considered in [96],

whereas the positive area under the curve corresponds to average mistreatment of group

𝐺2: it is a group notion of fairness consider in many fairness related studies [97, 98, 99].

Since we will show that the optimal interventions at the two extremes 𝐿1 and 𝐿∞ target

9To read a more detailed philosophical discussion on relevant philosophies of equality and decision-
making, we refer the interested reader to the 1979 Tanner Lectures on Human Values ([95]).
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qualitatively similar sets of students, we expect the solution for any other 𝐿𝑝 norm to also

behave similarly10, and so restrict our analysis to 𝐿1 and 𝐿∞.

Optimal Deterministic Strategies: We now proceed to proving our main results in the

deterministic settings, which fully describe the optimal debias intervals in our model. We

show in Figure 2.5 how much the two fairness measures can be improved as a function

of the budget 𝑐. We define T𝑚𝑚 (𝑐) = arg min𝑇∈T (𝑐) 𝑚𝑚(𝜇𝑇 ), in other words, T𝑚𝑚 (𝑐) is the

collection of sets 𝑇 that minimize 𝑚𝑚(𝜇𝑇 ) among sets with
∫
𝑇
𝑑𝐹1 ≤ 𝑐. The next result

gives an exact characterization of T𝑚𝑚 (𝑐), assuming11 𝑝 < 1 − 𝛽𝛼.

(a) optimal debiasing when 𝑐̂ is large (b) optimal debiasing when 𝑐̂ is small

Figure 2.4: Maximum mistreatment before and after optimal voucher allocation.

Theorem 23. Assume 𝑝 < 1 − 𝛽𝛼. Then there exists a set 𝑇 = [𝑍∗
1 , 𝑍

∗
2] ∈ T𝑚𝑚 (𝑐) such that all

other sets in T𝑚𝑚 (𝑐) differ from 𝑇 on a set of measure zero. If 𝑐 ≥ (1−𝑝) (1−𝛽𝛼)
1−𝑝+1−𝛽𝛼 , then

𝑍∗
1 =

( (1 − 𝑝) + ( 1
𝛽𝛼

− 1)𝑐
1
𝛽𝛼

− 𝑝

)− 1
𝛼

and 𝑍∗
2 =

(
(1 − 𝑝) (1 − 𝑐)

1
𝛽𝛼

− 𝑝

)− 1
𝛼

,

10An 𝐿 𝑝 norm on a probability space with 𝑝 small generally measures the average of a function, whereas a
large 𝑝 measures its “peakiness”, with 𝑝 = ∞ equaling the essential supremum, and values in between trad-
ing off between these properties (for a further discussion on the relationship between 𝐿 𝑝 spaces, see [100]).

11We refer to the end of Section 2.5.1 for a discussion on the various technical assumptions on data from
Section 2.4 and Section 2.5.1
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and 𝑚𝑚(𝜇[𝑍∗
1 ,𝑍

∗
2]) = (1 − 𝑝) (1 − 𝛽𝛼) 1−𝑐

1−𝑝𝛽𝛼 , reduced from 𝑚𝑚( 𝜇̂) = (1 − 𝑝) (1 − 𝛽𝛼). Conversely,

if 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)
1−𝑝+1−𝛽𝛼 , then:

𝑍∗
1 =

(
(1 − 𝑝 − 𝑐)𝛽𝛼

1 − 𝑝 + 𝑐
)− 1

𝛼

and 𝑍∗
2 =

(
(1 − 𝑝 − 𝑐)𝛽𝛼

1 − 𝑝

)− 1
𝛼

,

and 𝑚𝑚(𝜇[𝑍∗
1 ,𝑍

∗
2]) = (1 − 𝑝 − 𝑐) (1 − 𝛽𝛼) + 𝑝𝑐.

We include the proof of Theorem 23 in Appendix B.4. Interestingly, our proof also

shows that if vouchers are not distributed carefully, one may actually increase the maxi-

mum mistreatment and, more generally, shows which debiasing sets lead to an improve-

ment over the status quo. A pictorial representation of Theorem 23 is given in Figure 2.4.

The two sub-figures correspond to two choices of 𝑐. Moreover, Figure 2.5a shows how

much 𝑚𝑚(𝜇[𝑍∗
1 ,𝑍

∗
2]) decreases as the budget, 𝑐, increases.

(a) maximum mistreatment (b) PAUC

Figure 2.5: Effect of bias after debiasing the optimal set of 𝐺2 students given budget 𝑐.

We next consider the positive area under the curve (PAUC): this is the aggregate

amount of mistreatment experienced by all 𝐺2 students. In this case, we restrict our

attention to debiasing 𝐺2 students whose potentials are in a connected set—this is a jus-

tifiable implementation in practice (otherwise a student might feel fairly treated given

that someone with a better potential as well as someone with a worse potential receives

the voucher). This assumption also makes our analysis more tractable. In particular, let
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T 𝑐
𝑎𝑢𝑐 (𝑐) = arg min𝑇∈T 𝑐 (𝑐) 𝜎(𝜇𝑇 ) be the set of 𝑇 ∈ T 𝑐 (𝑐) that minimize 𝜎(𝜇𝑇 ). The next re-

sult gives an explicit description of these sets when assuming, again that 𝑝 < 1 − 𝛽𝛼 and

additionally that 𝑝 < 0.5.

Theorem 24. Assume 𝑝 < 1 − 𝛽𝛼 and 𝑝 < 0.5. Then T 𝑐
𝑎𝑢𝑐 (𝑐) is made up of a unique set

𝑇 = [𝑍∗
1 , 𝑍

∗
2]. If 𝑐 ≥ (1−𝑝) (1−𝛽𝛼)

2−𝑝−𝛽𝛼−𝑝𝛽𝛼+𝑝𝛽2𝛼 , then:

𝑍∗
2 =

(
(1 − 𝑝) (1 − 𝑐)
𝑝𝛽𝛼 + 1

𝛽𝛼
− 2𝑝

)− 1
𝛼

and 𝑍∗
1 =

(
(1 − 𝑝) (1 − 𝑐)
𝑝𝛽𝛼 + 1

𝛽𝛼
− 2𝑝

+ 𝑐
)− 1

𝛼

,

and 𝜎(𝜇[𝑍∗
1 ,𝑍

∗
2]) =

1
2 (1−𝑝) (1−𝛽

𝛼)
(
( 1
𝛽𝛼

−𝑝) (1−𝑐)2

𝑝𝛽𝛼+ 1
𝛽𝛼

−2𝑝

)
, down from 𝜎( 𝜇̂) = 1

2 (1−𝑝) (1−𝛽
𝛼). Otherwise,

if 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)
2−𝑝−𝛽𝛼−𝑝𝛽𝛼+𝑝𝛽2𝛼 , then:

𝑍∗
2 =

(
(𝑝𝛽𝛼 − 1)𝑐 + (1 − 𝑝)

(1 − 𝑝) 1
𝛽𝛼

)− 1
𝛼

and 𝑍∗
1 =

(
(𝑝𝛽𝛼 − 1)𝑐 + (1 − 𝑝)

(1 − 𝑝) 1
𝛽𝛼

+ 𝑐
)− 1

𝛼

,

and 𝜎(𝜇[𝑍∗
1 ,𝑍

∗
2]) =

1
2 (1 − 𝑝) (1 − 𝑐)2 − 1

2 𝛽
𝛼
(
[(𝑝𝛽𝛼−1)𝑐+(1−𝑝)]2

1−𝑝 + 𝑝𝑐2
)
.

The proof of Theorem 24 is given in Appendix B.5, a pictorial representation is pre-

sented in Figure 2.6. The two sub-figures again show two different choices of 𝑐. Fig-

ure 2.5b shows how much 𝜎(𝜇[𝑍∗
1 ,𝑍

∗
2]) decreases as 𝑐 increases.

In Table B.2 of the e-Companion, we compare the optimal ranges disadvantaged stu-

dents to debias under the two measures of fairness, with parameters 𝛼 = 3, 𝛽 = 0.8, and

𝑝 = 1/4. We find on average a 95% overlap of the optimal intervals under the two mea-

sures of fairness. In particular, both measures suggest that vouchers should be given to

the average (middle performing) students.

Although these results highlight an important deviation from the current practice of

prioritizing top-performing students for scholarships, we highlight in the next section

two fundamental problems with such policies.
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(a) optimal debiasing when 𝑐̂ is large (b) optimal debiasing when 𝑐̂ is small

Figure 2.6: PAUC before and after optimal voucher allocation.

2.5 Incentive Compatible and Individually Fair Voucher Distribution

In the last section, we characterized the deterministic intervals to distribute vouchers

to in order to minimize either the maximum mistreatment or the positive area under

the mistreatment curve for the disadvantaged student group. In this section, we intro-

duce two natural and desirable properties that the policies developed in Section 2.4 fail

to have. Once we recognize these flaws, we show in Section 2.5.1 how we can shift from

a deterministic voucher distribution policy to a randomized one in order to satisfy them.

Our first property is individual fairness, which requires that similar individuals be

treated similarly [101]. While a formal definition of this concept is postponed to Sec-

tion 2.5.1, we observe here that the policies developed in Section 2.4 fail to be individ-

ually fair as individuals close to the boundary of the debiasing interval are treated very

differently depending on whether they are inside or outside of it.

Our second property is incentive compatibility (see, e.g., [102]). In general, it requires

that no individual can benefit from misrepresenting their features. In our setting, we

assume that a student is able to misrepresent themselves as appearing to have lower per-

ceived potential (e.g., intentionally achieving a lower score on a test) in order to be part
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of the set of students that get allocated vouchers. Recall that a DDS is a measurable set

𝑇 ⊆ [1,∞). A DDS is incentive compatible if no student is assigned to a better school if they

misreport their performance. Formally, assume that a voucher given to a disadvantaged

student with reported perceived potential 𝛽𝑍 (𝜃), will improve their performance up to

𝑍 (𝜃)12; then, a DDS 𝑇 is incentive compatible if for each 𝑥 ∈ [1,∞) \ 𝑇 and 𝑥′ ∈ 𝑇 with

𝑥 > 𝑥′, we have 𝛽𝑥 ≥ 𝑥′.

Lemma 25. Assume 𝛽 ∈ [0, 1) and let 𝑇 ≠ ∅ be an incentive compatible DDS. Then 𝑇 is of the

form {𝜃 ∈ Θ : 𝑍 (𝜃) ≥ 𝛿} or {𝜃 ∈ Θ : 𝑍 (𝜃) > 𝛿} for some value 𝛿 ∈ [1,∞).

We defer the proof to Appendix B.2. This lemma shows that, if we care about incen-

tive compatibility and require that vouchers are distributed deterministically, then the

only feasible mechanism is to debias all students that have potential above some cutoff 𝛿

(i.e. the top students). However, we showed in the last section that such policies are not

optimal. To overcome these flaws in deterministic policies, we next turn to randomiza-

tion.

2.5.1 Randomized assignment of vouchers

In this section (and in its proofs in Appendix B.6) we abuse notation and identify a

student 𝜃 with their true potential 𝑍 (𝜃) for simplicity.

A Randomized Voucher Program (RVP) is a measurable function 𝜌 : Θ → [0, 1] that

gives, for each 𝜃 ∈ Θ, the probability that a 𝐺2 student with true potential 𝜃 is assigned

a voucher. Observe that if 𝜌(𝜃) ∈ {0, 1} for all 𝜃 ∈ Θ, then 𝜌−1(1) is a measurable set

and therefore also a deterministic debiasing set (DDS) as in the definition in Section 2.4;

likewise, given a DDS 𝑇 we can construct the RVP 𝜌𝑇 (𝜃) = 1{𝜃∈𝑇} that coincides with a

given DDS.

12This assumption is justified by the fact that additional training is usually commensurate with the (per-
ceived) level of a student.
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The main class of RVPs investigated in this section are those we call Proportional-to-

Mistreatment (PropM), denoted by 𝜌𝑚 and defined as

𝜌𝑚 (𝜃) :=
2𝑐

(1 − 𝛽𝛼) (1 − 𝑝)𝑚 𝜇̂ (𝜃), (2.5)

for some 𝑐 ∈ (0, 1/2] (recall that 𝑚 𝜇̂ (𝜃) is the mistreatment of a student with real potential

𝜃 when no vouchers are distributed). It is easy to see that 𝑐 is the expected proportion

of disadvantaged students that will get a voucher, that is 𝑐 =
∫
Θ
𝜌𝑚 𝑑𝐹. Intuitively, 𝜌𝑚

assigns a larger probability of being debiased to students with a higher mistreatment.

As we show next, under broadly applicable technical hypotheses on the parameters,

PropMs satisfy many of the properties that deterministic voucher allocations fail to have.

Moreover, we will show that they can lower the maximum expected mistreatment. To

state these results formally, we first extend concepts from deterministic DDSs to RVPs.

We let 𝜇𝜌 (𝜃) be the expected school that a student with true potential 𝜃 ∈ Θ is assigned to

under 𝜌. An explicit computation of 𝜇𝜌 for arbitrary 𝜌 can be found in Lemma 112 of Ap-

pendix B.6. Now all prior definitions and notation carry over, including the mistreatment

𝑚𝜌, and maximum mistreatment 𝑚𝑚𝜌.

An RVP 𝜌 is incentive compatible if 𝜇𝜌 (𝜃′) ≥ 𝜇𝜌 (𝜃) for all 𝜃′ < 𝜃. That is, an RVP is

incentive compatible if a student with true potential 𝜃 is not better off by manipulating

themselves to appear as having a true potential 𝜃′ < 𝜃.

We define individual fairness as a Lipschitz condition on 𝜌. We say an RVP 𝜌 is 𝑘-

individually fair if, for each 𝜃, 𝜃′ ∈ [1,∞), |𝜌(𝜃) − 𝜌(𝜃′) | ≤ 𝑘 |𝜃 − 𝜃′| (note that under this

definition, no non-trivial DDS is 𝑘-individually fair for any 𝑘). We can now state the main

result from this section, whose proof is deferred to Appendix B.6.3. Observe that 𝑚𝑚∗(𝑐)

is the maximum mistreatment achieved by the best deterministic policy minimizing this

metric, as computed in Theorem 23.

Theorem 26. Let 𝜌𝑚 be a PropM defined as in (2.5) for some 𝑐 ∈ (0, 1/2] and assume 𝑝 ≤ 0.5.
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Let 𝑚𝑚∗(𝑐) = min𝑇∈T (𝑐) 𝑚𝑚(𝜇𝑇 ). Then:

1. 𝜌𝑚 is 2𝑐𝛼
1−𝛽𝛼 -individually fair.

2. 𝜌𝑚 is incentive compatible for

𝑐 ≤ 1 − 𝑝
2 [𝑝(1 − 𝛽𝛼) + (1 − 𝑝) (𝛽−𝛼 − 1)] . (2.6)

3. Suppose 𝑝 < 1 − 𝛽𝛼 and 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)
1−𝑝+1−𝛽𝛼 . Then 𝑚𝑚𝜌𝑚 ≤ 𝑚𝑚∗(𝑐) if

𝑐 ≥ 1 − 𝑝 + 1 − 𝛽𝛼
4𝑝(1 − 𝛽𝛼) . (2.7)

(2.6) and (2.7) give complementary conditions on the amount of vouchers that can be

given out. On one hand, (2.6) suggests that distributing too many vouchers prevents in-

centive compatibility of the PropM. In fact, a 𝑐 too large causes students performing just

above the most mistreated student to be incentivized to artificially lower their score, as

the absolute value of the derivative of the PropM becomes large around its maximum. On

the other hand, (2.7) suggests that we need to distribute enough vouchers to see the max-

imum expected mistreatment 𝑚𝑚𝜌𝑚 drop below the optimal deterministic one 𝑚𝑚∗(𝑐).

This is because the optimal deterministic policy debiases the most mistreated student

straight away whereas the PropM distributes vouchers more widely, and so the maxi-

mum expected mistreatment does not immediately drop as significantly. As we discuss

at the end of the section, both conditions are satisfied for a large range of parameters.

PropMs represent therefore a more robust and theoretically satisfying alternative to re-

ducing the maximum mistreatment that is at least as effective as the deterministic voucher

assignments developed in Section 2.4.

We observe however, that to design a non-trivial incentive compatible RVP, it is es-

sential to have knowledge of the distribution of student potentials. We say an RVP 𝜌 is

Increasing-with-Potential (IwP) if 𝜌(𝜃) ≥ 𝜌(𝜃′) for all 𝜃 > 𝜃′. An IwP assigns a higher prob-
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ability of being debiased to students with higher potential. It can therefore be interpreted

as a randomized counterpart of the DDS from Lemma 25 that allocated vouchers to the

top performing students (in particular, the DDS from Lemma 25 is IwP).

General distributions of potentials: For the rest of this section, we relax the Pareto

assumption and consider the more general version of the model defined in Section 2.2

where the true potentials of students are allowed to be drawn from any continuously

integrable distribution 𝐹. All definitions naturally extend to this setting. We first show

that under mild technical conditions, IwPs are incentive compatible with respect to any

𝐹. We prove this fact in Appendix B.6.4.

Lemma 27. Suppose 𝜌 is IwP and such that it is everywhere continuously differentiable except a

countable set of isolated points where it has right-continuous jump discontinuities. Then, for any

distribution of true potentials 𝐹, 𝜌 is incentive compatible.

The following theorem gives a converse to the previous statement and is also proved

in Appendix B.6.4.

Theorem 28. Suppose 𝜌 is an RVP. Let 𝜃 ∈ [1,∞) such that 𝜌 is continuously differentiable

in some neighborhood of 𝜃 but 𝜌′(𝜃) < 0. Then, for any 𝛽 ∈ (0, 1) and 𝑝 ∈ (0, 1), there exists

a continuous distribution 𝐹 such that if true potentials are distributed according to 𝐹, 𝜌 is not

incentive compatible.

Theorem 28 implies that without any information on the distribution of student poten-

tials, the only voucher distribution policies that are guaranteed to be incentive compatible

are those that allocate vouchers with higher probability to higher performing students.

Examples of such policies are lotteries for students whose potential is above some certain

threshold. Hence, if no information on the distribution of students potential can be as-

sumed, it may be reasonable for policy-makers to stick to a more conservative distribution

of vouchers which rewards top-performing students.
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Discussion on technical assumptions: We now discuss the technical assumptions on

the parameters of the model in Section 2.4 and Section 2.5. In Theorem 23, Theorem 24,

and Theorem 26 we assume 𝑝 < 1 − 𝛽𝛼. Note that the right hand side is equal to

P(𝐹2 ∈ [𝛽, 1]), that is, the proportion of disadvantaged students whose perceived po-

tential is less than 1 (the smallest perceived potential of any non-disadvantaged student).

The condition 𝑝 < 1− 𝛽𝛼 therefore requires that the proportion of disadvantaged students

out of the whole student population is no more than the proportion of disadvantaged

students that are perceived as being worse than any non-disadvantaged student. In The-

orem 24, we further assume 𝑝 < 0.5, and in Theorem 26 we assume both an upper and

a lower bound on 𝑐. The conditions need to be checked and do not always hold, but we

note that all conditions hold for many reasonable choices of (𝛼, 𝛽, 𝑝, 𝑐). For instance, they

hold if 𝛽 = .8, 𝛼 = 3, 𝑝 < .4 (as in Figure 2.5 and the Figure 2.4(b)), and 𝑐 ≤ 1/4; or if 𝛽 = .9,

𝛼 = 8.9, 𝑝 ≤ 1/3, and 𝑐 ≤ 1/4 (as in our numerical experiments in Section 2.7).

2.6 Alternate Models of Bias

Until now we have studied a relatively simple model of uniform multiplicative bias

that posits that a disadvantaged student 𝜃 with true potential 𝑍 (𝜃) is perceived at po-

tential 𝑍̂ (𝜃) = 𝛽𝑍 (𝜃); where 𝛽 ∈ (0, 1] is fixed. We now investigate deviations from this

model.

Model Misspecification and Bias Processes: As we discuss in Section 2.1.3, our work

touches on the questions of how bias and prejudice arises and propagates. While our

model is analytically tractable, it does not necessarily capture the realities of bias. In Ap-

pendix B.7, we study the impact of various types of model misspecification on the pre-

dictions of our model. In particular, we look at two types of models. One class is those

where the perceived potentials of disadvantaged students are noisier than those of the

non-disadvantaged students (therefore resembling the statistical discrimination models
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discussed in Section 2.1.3), either by adding noise to the bias factor, or by adding noise to

the resultant perceived potential. The second class is additive models, where bias takes

the form of an additive shift in perceived potentials. In both of these cases (and the case

of a mixture), we empirically show that applying our simple multiplicative model yields

close to optimal debiasing ranges, and conclude that our model is robust to such model

misspecification.

An additive bias model: We next turn our attention to an additive model of bias, and

extend some of the results in Section 2.4 to the case of additive (in place of multiplicative)

bias. We consider the same setting as Section 2.2 where the multiplicative bias model was

introduced, but now the perceived potential of a student is given by 𝑍̂ (𝜃) = 𝑍 (𝜃) − 𝛾 if

𝜃 ∈ 𝐺2 (and 𝜃 does not receive a voucher), with 𝑍̂ (𝜃) = 𝑍 (𝜃) otherwise. This then gives

𝐹1(𝑡) = 1 − 𝑡−𝛼, 𝐹2(𝑡) = 1 − (𝑡 + 𝛾)−𝛼, (2.8)

with domains [1,∞) and [1 − 𝛾,∞), respectively. The expression given in (2.1) for the

biased matching 𝜇̂(𝜃) continues to hold under the additive definition of 𝑍̂ , and this fact

yields the following result, which is an analogue of Proposition 22.

Proposition 29. Under additive bias of 𝛾 ≥ 0, for any student 𝜃 ∈ 𝐺2, the displacement under 𝜇̂

is given by:

disp𝜇̂ (𝜃) =


(1 − 𝑝) ((𝑍 (𝜃) − 𝛾)−𝛼 − (𝑍 (𝜃))−𝛼) , if 𝑍 (𝜃) ≥ 1 + 𝛾,

(1 − 𝑝) (1 − (𝑍 (𝜃))−𝛼) , if 𝑍 (𝜃) < 1 + 𝛾.
(2.9)

For any student 𝜃 ∈ 𝐺1, we have disp𝜇̂ (𝜃) = −𝑝((𝑍 (𝜃))−𝛼 − (𝑍 (𝜃) + 𝛾)−𝛼). Thus, the maximum

displacement of (1− 𝑝) (1− (1+ 𝛾)−𝛼) is experienced by a 𝐺2 student with potential 1+ 𝛾; and the

most significant negative displacement of −𝑝(1 − (1 + 𝛾)−𝛼) is experienced by a 𝐺1 student with

potential 1.
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Optimal Deterministic Debiasing: We next extend Theorem 23 which establishes the

optimal debiasing interval under maximum mistreatment to the additive model. Let

S𝑐 (𝑐) be the set of closed and connected subsets of [1,∞) such that for 𝑆 ∈ S𝑐 (𝑐),
∫
𝑆
𝑑𝐹1 ≤

𝑐. Similarly to the multiplicative case, we define 𝜇𝑆 to be the matching under the additive

model when students in 𝑆 receive vouchers. Let then S𝑐𝑚𝑚 (𝑐) = arg min𝑆∈S𝑐 (𝑐) 𝑚𝑚(𝜇𝑆)

be the collection of sets in S𝑐 (𝑐) that minimize maximum mistreatment. The following

result, which we prove in Appendix B.8, is analogous to Theorem 23.

Theorem 30. The set S𝑐𝑚𝑚 (𝑐) consists of a unique set 𝑆 = [𝑌 ∗
1 , 𝑌

∗
2 ] where 𝑌 ∗

1 and 𝑌 ∗
2 are computed

as follows. 𝑌 ∗
2 = min {𝑈1,𝑈2} where𝑈1 is the positive solution to

(1 − 𝑝) (1 − 𝑐) = P (𝐹 ≥ 𝑈1 − 𝛾) − 𝑝P (𝐹 ≥ 𝑈1) , (2.10)

and𝑈2 is the positive solution to

(1 − 𝑝) (1 − 𝑐) = (1 − 𝑝)P (𝐹 ≥ 𝑈2 − 𝛾) + 𝑝𝑐, (2.11)

and 𝑌 ∗
1 = (𝑐 + (𝑌 ∗

2 )
−𝛼)−1/𝛼.

We remark that it is possible to similarly compute the optimal DDS under the PAUC

measure. In the proof of Theorem 30, we give an expression for the mistreatment for a

given student, and one can then integrate this against 𝐹1 to compute PAUC. One easily

argues that this expression has a global minimum, but the resultant expressions are not

amenable to analytical computations, so we do not include this result.

Multiplicative vs Additive Models: We close by noting that we fitted both the multi-

plicative as well as the additive model to our real data, and as measured by both Wasser-

stein distance and KL-divergence, the multiplicative model did fit it better, which is why

we focus heavily on that model as our main object of study in this paper.
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2.7 Experimental Case Study

Our theoretical analysis has shown that mistreatment under various metrics can be

substantially reduced via a targeted intervention tailored to the distribution of student

potential. We now use data from NYC with real test scores and a student population with

heterogeneous preferences over schools to compute optimal policies for reducing student

mistreatment. We show that our theoretical model provides a reasonable approximation

despite some deviations from the data, and importantly, that our qualitative results con-

tinue to hold. Our theoretical analysis is therefore instrumental in identifying effective

debiasing policies for real-world applications, and can be optimized empirically for real

data.

Dataset: There are eight Specialized High Schools (SHSs) in NYC which are consistently

ranked among the best schools in the city. Admission to these schools is highly competi-

tive, and is determined solely by the score a student achieves on the SHS Admissions Test

(SHSAT). An intake of only about 5, 000 students gets selected every year from a pool

of 29, 000 applicants who take the test. We apply our model to the dataset of 2016–17

academic year SHS admissions which include for each student their SHSAT score, their

preference list over the SHSs, and whether the DOE deems them disadvantaged or not.

Pre-processing & Model Fitting: As in Section 2.1.1, we estimate the distributional shift

in scores between the two groups (see Figure 2.1), then assume that reversing this shift

gives the innate ability for each student, and use this scaled score as the (in reality unob-

servable) true potential. In our dataset, we fit 𝛽 = 0.882 for a multiplicative model and

𝛾 = 49 points for an additive model13. We take the original scores to be the perceived

potentials, and the scaled scores to be the true potentials: that is, for 𝐺1 students, we al-

ways use the raw SHSAT score, and for 𝐺2 students with raw score 𝑠 in the dataset, we

13We choose parameters that minimize the Wasserstein distance between the two distributions. The
additive shift becomes 49/475 = 0.103 after normalization.
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use 𝑠/𝛽 (or 𝑠 + 𝛾) as their true potential if they receive a voucher (i.e. are debiased) and 𝑠

otherwise.

In this section, all matchings on real data are computed as stable matchings with the

student-proposing deferred-acceptance algorithm, using the true preferences of students,

and with schools choosing students based solely on their perceived score. This mimics

closely the real SHS admissions process. We extend the definition of displacement in the

natural way: as the difference in the ranking of the school a student is assigned to (in

their own preference list) between the matching at hand and the matching that uses the

estimated true potentials. Due to the heterogeneity of student preferences, the displace-

ment for a given student may be positive, negative, or zero regardless of if they receive

a voucher or not. Because of this variability, we use the positive area under the mistreat-

ment14 curve (PAUC) measure exclusively to compare interventions as it averages out

this effect.

Our theoretical model assumes a balanced market, whereas only a small number of

those who apply to SHSs are admitted. We therefore discard those students whose score

is lower than a cutoff of 475 points, whom we compute to not receive admissions in any

case15. This right tail of the student scores now closely matches the Pareto distribution

(after dividing by the minimum score) with 𝛼 = 8.856 in the multiplicative case (see Fig-

ure 2.2) and 𝛼 = 9.315 in the additive case. Of these students, we compute the proportion

that are disadvantaged as 𝑝 = 0.319 for the multiplicative case and 𝑝 = 0.300 for the addi-

tive case16. These normalizations yield a subset of students that form a balanced market

and whose distributional properties approximate our model well.

Model Characteristics: We first observe empirically that without intervention, all 𝐺1

students (magenta dots in Figure 2.7) have non-positive displacement and all 𝐺2 students
14Recall mistreatment is the non-negative part of displacement.
15We compute this cutoff by performing a stable matching using the true potentials and rounding down

to the nearest 5 points the score of the last student that gets admitted in this matching.
16Because of the different distributional assumption, a different number of 𝐺2 students end up above the

cutoff in the two different models.
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Figure 2.7: The displacement of 𝐺1 and 𝐺2 students in the SHSAT dataset from NYC DOE. Blue and ma-
genta dots respectively show the displacement of disadvantaged and non-disadvantaged students when
there is no intervention. In the top figure, the students in the debiased range (dashed lines) are offered
vouchers, in the bottom figure vouchers are offered with probability given in Figure 2.8. In the bottom fig-
ure with the randomized voucher program, we plot the average displacement over 100 repetitions. In both
figures, we plot the displacement of disadvantaged students whose assigned schools change, with red dots
representing those going to more preferred schools and green dots for those going to less preferred schools.

(blue dots) have non-negative displacement, as predicted by our analysis in Section 2.3.

Furthermore, we consider deterministic and randomized interventions with 𝑐 = 0.17. In

Figure 2.7 (top), deterministic vouchers are offered to students between the two dashed

lines. All 𝐺2 students that receive vouchers (red dots) have a displacement of at most

zero, but some 𝐺2 students might (green dots) fare worse, particularly the ones who are

scoring slightly higher than the range to which vouchers are offered, as they are overtaken

by some other 𝐺2 students just below them. This highlights the non-incentive compatible

nature of such deterministic policies (such students have incentive to underperform).
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Figure 2.8: The average bucketed mistreatment of students as computed from empirical data. Note the peak
at 525, which represents an average student (cf. Figure 2.4, the curve representing mistreatment before
intervention). The vertical line indicates the value of 1/𝛽 where the theoretical PropM debiasing policy
would have its maximum probability of assigning a voucher.

Applying the randomized voucher program to this dataset requires further modifica-

tions. As observed earlier, since students have heterogeneous preferences, their mistreat-

ment is also heterogeneous. In the worst case two students with the same score may have

different mistreatment. To produce an empirical PropM (see Figure 2.8), we divide the po-

tentials of admitted students into 20 equally sized buckets and compute an average mis-

treatment within each such bucket. The PropM is then normalized to be proportional to

this average mistreatment, with magnitude determined by the budget of vouchers avail-

able. Since PropM is a randomized voucher program (such that a given student might

get a voucher in one realization but not another), we run this experiment 100 times with

different seeds and take the average displacement (see Figure 2.7, bottom). Our exper-

iments show that the maximum mistreatment is reduced compared to the deterministic

allocation, and more generally, mistreatment improves across the board indicating a more

equitable outcome. Note that due to the heterogeneity of preferences and binned averag-

ing, PropM is not in fact incentive compatible, as indicated by the 𝐺2 students with larger

displacement under intervention (green diamonds). However, unlike the deterministic

debiasing procedure, students with an incentive to underperform are interspersed with

students with no incentive to underperform, making it harder for students to game the
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system ex-ante. Moreover, it is not uncommon that some theoretically incentive compat-

ible mechanisms exhibits in practice some lack of incentive compatibility. For instance,

the NYC School Match mechanism curtails the preference lists of students to at most 12

schools [3], incentivizing students to be at least partially strategic.

Theoretical vs. empirical intervals: We next compare theoretically optimal intervals

with those found to be empirically optimal. The basic primitive in our analysis is the rou-

tine that is given an interval of students to debias and computes the PAUC. By computing

actual stable matchings and their PAUC, we produce a reliable benchmark to compare

both theoretical and empirical intervals. We use this routine in a grid search to find the

empirically optimal debiasing intervals.

We consider two cases: a low budget regime (𝑐 = 0.1) and an abundant budget regime

(𝑐 = 0.4). For both cases, we compute the theoretically optimal intervals by applying our

theorems to the parameter values fitted earlier. Table 2.1 shows the optimal ranges found

both via our theory and via empirical grid search. The differences between the theoretical

and empirical models are minor, with the biggest difference being under the additive

assumption. As earlier remarked, this is also the less-well fitting model, but even then,

the intervals are qualitatively close as opposed to debiasing top students.

Model Range 𝑐 = 0.1 𝑐 = 0.4

multiplicative theoretical [526.73, 547.19] [506.84, 582.99]
multiplicative empirical [527, 543] [505, 561]
additive theoretical [516.94, 530.91] [499.82, 558.24]
additive empirical [529, 544] [508, 567]

Table 2.1: Comparison of optimal ranges of students to offer vouchers to, obtained empirically and theoret-
ically (based on our formulas), under two different budgets.

Overall, we find further evidence of reasonability of our assumptions since the empir-

ical results on real-world data match the optimal target distribution of students predicted

by our assortative model.

75



2.8 Discussion

The qualitative takeaways from our work speak to a much ingrained systemic problem

that limits access to opportunities—how can one understand the impact of bias on soci-

etal practices and systematically account for biases in the real world? Indeed, resources

available for meaningful interventions in an existing system are limited, and there is re-

sistance to change in the form of lawsuits and pushback to changes in admissions policies

that attempt at a more equitable process. Thus, our focus is on understanding the impact

of minimally invasive use of targeted resources, as opposed to changing the matching

mechanism itself.

From our analysis, we are able to highlight several qualitative properties using simple

models of bias applied to matching mechanisms:

1. Disparate Impact: The disparity in admissions is experienced much more by the

disadvantaged group of students, compared to the marginal advantage for the rest.

2. Interventions: A carefully-designed randomized voucher distribution program can

counter some of the effects of bias, while also being incentive compatible and in-

dividually fair. We further showed empirically that our qualitative results remain

unchanged when applied to a real-world dataset (the SHS admissions process in

New York).

3. Resources: Additional resources centrally distributed to slightly above-average stu-

dents overall in the system (such as top performers in schools with high economic

need index) would maximally impact measures of group fairness. Targeting re-

sources at students based on their performance provides an important lever for pol-

icy makers to improve fairness.

These takeaways are a first step, and in no way address all the systemic problems

in school admissions process—such as access to counselors, transport to schools or fa-
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milial support towards education. But they do help us understand the most impacted

student groups, and provide a mathematical basis to policymakers to make changes to

allocation of public funds. We have shared the results of this work and are in discussions

with the Department of Education of New York City. Further, our analysis leads to open

questions such as theoretically optimal interventions under other structured student pref-

erences and qualitative analyses when the distribution of student potentials is not Pareto

distributed.
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Chapter 3: On Quota-Filling and Kuhn Choice Functions

Joint work with Yuri Faenza, and Benjamin Rubio.

3.1 Introduction

In classical stable matching theory, the preferences of every agent are specified by a

strict ordering over their acceptable partners on the other side of the market1. When the

matching is one-to-one—meaning that each agent gets matched to at most one partner on

the other side—such a list fully specifies the preferences an agent may have. Due to the

simplicity and elegance of this model, strict orderings have also been extensively studied

in the context of one-to-many, and many-to-many matching, where agents may be matched

to multiple partners on the other side. In these cases, however, one can gain significantly

in generality and expressive power by allowing agents to specify more granular prefer-

ence via choice functions. A choice function is a function that maps each set of offered

partners to the subset of those that the agent would prefer being matched to. We discuss

the formal definition in Section 3.2.

Choice functions need only satisfy the conditions of substitutability and consistency for

a stable matching to exist and be found via Roth’s generalization of the Deferred Accep-

tance algorithm [103]. While choice functions represent a formally elegant extension in

theory, practical use is significantly hindered by various limitations on information ex-

change, a phenomenon that is particularly prevalent in large markets. For this reason,

few real-world applications explicitly utilize choice functions in stable matching. For in-

stance, many school districts—such as the one in New York City—only allow schools to
1This means that the agent compiles an ordering of the agents on the other side, omitting any that they

do not find acceptable. While results are most elegant when the list is taken to be strict, there is also a robust
body of work on ties and tie-breaking.
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express their preferences over students via strict preference lists. This is in contrast to the

increasing desire of schools to assemble balanced cohorts of students from diverse back-

grounds, which has been shown to produce positive effects on student outcomes [104,

105]. Strict preference lists are then a poor substitute for expressing preference in such

markets. For instance, we show that there exists a choice function such that when ap-

proximated by any preference list, the chosen set of students will coincide in no more

than one student in the worst case. Finding tractable ways for schools to indicate their

preference beyond preference lists is therefore an important research direction.

In this chapter, we investigate choice functions in the context of school choice, in par-

ticular those that satisfy the property of being quota-filling. Such a condition is natural

when schools may not waste resources by rejecting a student unless they are able to admit

a more desirable one. We show that quota-filling choice functions cannot be used in prac-

tice under the common offline model of stable matching because the Deferred Acceptance

algorithm fails to terminate in polynomial time. We then propose a class of Kuhn choice

functions that are amenable to real world use and possess many desirable properties. We

present several results on the approximability of different types of choice functions, es-

tablishing a hierarchy of quota-filling choice. These theoretical results are complemented

by computational results where we explore Kuhn and non-Kuhn choice functions over

small cohorts further.

3.1.1 Contributions

We investigate the gap between the elegant theory of choice functions present in the

literature and the practical constraints of large real-world matching markets like school

choice. Our work focuses on quota-filling choice functions, which are natural in this

setting. We present results on the following topics:

1. The limitations of choice functions in the offline matching model. We begin by show-

ing how general quota-filling choice functions are not viable in practice under what we
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call the offline model of stable matching, used by most real-world matching markets. More

precisely, we show that the number of quota-filling choice functions is doubly exponen-

tial in the number of partners on the other side of the market, which shows that rep-

resenting or communicating such choice functions is computationally infeasible for any

reasonably-sized market. This may explain why many school districts resort to the sim-

pler, less expressive models that use strict preference lists.

2. Kuhn choice Functions as a practical alternative. The unwieldiness of general choice

functions motivates the search for a more compactly representable, yet expressive sub-

class of choice functions. We propose Kuhn choice functions for this purpose, which arise

from maximum-weight matchings in an auxiliary bipartite graph, a construction that

lends itself to several desirable properties. We show that Kuhn choice functions are highly

interpretable and can be represented compactly, making them ideal for markets where

these properties are paramount, such as school choice.

3. Results on the Kuhn recognition problem. We show that while Kuhn choice functions

possess desirable properties, recognizing whether an arbitrary quota-filling choice func-

tion is Kuhn or not, is itself a highly non-trivial task. We present results for the case of a

school with two seats, and in general show that deciding whether a given choice function

is Kuhn has high query complexity.

4. Approximation and the hierarchy of choice functions. Motivated by the fact that de-

termining whether a given preference system belongs to a specific class can be difficult,

we turn to the question of approximation. We analyze the relationships between Kuhn

choice functions and other natural classes, including responsive preferences and the en-

tire class of quota-filling choice functions. We establish a formal hierarchy of these func-

tion classes by proving a series of approximability and inapproximability results. Our

results formalize the expressive power lost or gained when moving between models.

5. Computational results. We discuss practical aspects of using choice functions for sta-

ble matching via a number of computational results. We present a Mixed-Integer Pro-
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gram (MIP) to decide whether a given quota-filling choice function is in the class of Kuhn

choice, discuss various representations of choice functions, then close by investigating the

number of choice functions of various types for small parameter sizes, and discussing a

few particular cases of non-Kuhn choice functions.

3.1.2 Organization of the Chapter

The rest of this chapter is organized as follows. We begin in Section 3.2 by introducing

the theory of stable matching with choice functions, and defining many of the standard

classes of choice functions considered in the literature. In Section 3.3.1 we discuss the

offline model of stable matching as used by many school choice programs, and highlight

the practical constraints with communication complexity in such settings. This motivates

our introduction of Kuhn choice functions in Section 3.3.2 where we discuss their prop-

erties and the problem of recognizing whether a path-independent, quota-filling choice

function belongs in this class. In Section 3.3.3 we introduce our notion of approxima-

tion for choice functions, and construct the hierarchy of choice via various results on the

approximability and inapproximability of choice functions. Proofs of our main results

appear in Section 3.4 with short commentary. In Section 3.5, we complement our theoret-

ical results with a discussion on the computational aspects on applying choice functions

in stable matching. We close the chapter in Section 3.6 by arguing that markets such as

the New York City public school choice market should adopt the more expressive class

of preference systems captured by Kuhn choice functions due to their many desirable

properties.

3.2 Preliminaries of Choice Functions

In this section, we introduce choice functions as an extension of preference lists in the

stable matching problem. Here we take 𝑋 to be a set of students, and consider the choice

function describing the preferences of a single school in a school choice model. We will
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discuss the market as a whole later.

Definition 31 (Choice function). A choice function C on a ground set 𝑋 is a set function C :

2𝑋 → 2𝑋 such that C(𝑆) ⊆ 𝑆 for all 𝑆 ⊆ 𝑋 . Given a set of offered partners 𝑆, the choice function

outputs C(𝑆), the subset of partners that the agent prefers.

Two important regularity properties of choice functions are substitutability and consis-

tency [106].

Definition 32 (Substitutability). C is substitutable if for all 𝑆 ⊆ 𝑋 and 𝑇 ⊆ 𝑆,

C(𝑆) ∩ 𝑇 ⊆ C(𝑇).

Equivalently, C is substitutable if for all 𝑆 ⊆ 𝑋 , if 𝑏 ∈ C(𝑆) and 𝑇 ⊆ 𝑆, then 𝑏 ∈ C(𝑇 ∪ {𝑏}).

In other words, if 𝑏 is chosen out of 𝑆, then it will be chosen out of any subset of

𝑆 where it is available. If this condition is met, we say that students are substitutes to

the school. It rules out complementarity, where a school might prefer two students, say

Jesse ( 𝑗) and Nicole (𝑛), together but not individually. In such a case we would have

C({ 𝑗 , 𝑛}) = { 𝑗 , 𝑛} but C({ 𝑗}) = ∅, which violates substitutability. In school matching

students rarely exhibit this type of coupling, but it is more common in other contexts

such as assembling a team of athletes. Jesse and Nicole in that case might have a long

history of playing together and make a great pair on the team by complementing each

other, yet may each be lackluster independently.

Definition 33 (Consistency). C is consistent if for all 𝑆 ⊆ 𝑋 , and 𝑇 ⊆ 𝑆,

C(𝑆) ⊆ 𝑇 =⇒ C(𝑆) = C(𝑇).

Consistency guarantees that removing elements that were not chosen from 𝑆 does not

change the choice C(𝑆). This condition is also known as the property of irrelevance of

rejected contracts in the literature. Another key property is path-independence [106].
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Definition 34 (Path-independence). C is path-independent if for all 𝑆, 𝑇 ⊆ 𝑋 ,

C(𝑆 ∪ 𝑇) = C(C(𝑆) ∪ 𝑇).

Path-independence is also referred to in the literature as being Plottian due early work

in [107]. The next lemma is well known in the literature, stating that a choice function

is substitutable and consistent if and only if it is path-independent. We provide a proof in

Appendix C.1 for completeness.

Lemma 35. A choice function C is path-independent if and only if it is substitutable and consis-

tent.

In the context of public school choice, schools are considered a public resource that

ought to not be wasted. This means that they should accept any student that applies as

long as they have seats to spare. This motivates the definition of a quota-filling choice

function [108].

Definition 36 (Quota-filling). A choice function C is quota-filling with quota 𝑞 if for all 𝑆 ⊆

𝑋 ,

|C(𝑆) | = min {|𝑆 | , 𝑞} ,

that is, |C(𝑆) | = 𝑞 if |𝑆 | ≥ 𝑞, and C(𝑆) = 𝑆 otherwise.

Quota-filling choice functions with quota 𝑞 are also often referred to as 𝑞-accepting or

𝑞-acceptant choice functions in the literature. Another well known result is that consis-

tency always holds for a quota-filling choice function that satisfies substitutability. Again,

a proof appears in Appendix C.1.

Lemma 37. Suppose C is quota-filling and substitutable. Then it is consistent.

From now on, we assume all choice functions are path-independent and quota-filling

unless otherwise stated.
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Matching and Stability: We next introduce the concept of stability in the setting of

one-to-many matching for school choice, where schools have preferences given by choice

functions [103]. We consider a set of students 𝑋 and a set of schools 𝑆. We assume each

school 𝑠 ∈ 𝑆 has a capacity of 𝑞 seats. For simplicity of exposition, we assume all schools

have equal capacities, but all results continue to hold in the case of heterogeneous capac-

ities. Students are assumed to have a (strict) preference list over acceptable schools 𝑆,

and the preference of schools is assumed to be described by a 𝑞-quota-filling and path-

independent choice function. For convenience, we formalize this structure and call it a

matching market.

Definition 38 (Matching market). We say M = (𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆) is a matching market,

where 𝑋 is a set of students, 𝑆 is a set of schools, every student 𝑥 ∈ 𝑋 is endowed with a strict

preference order ≻𝑥 over a subset of schools (those the student deems acceptable), and every school

𝑠 ∈ 𝑆 has a 𝑞-quota-filling choice function C𝑠 over students in 𝑋 for some 𝑞 ∈ N.

A matching for a matching market is an assignment of students to schools.

Definition 39 (One-to-many matching). A function 𝜇 : 𝑋∪𝑆 → 2𝑋∪𝑆 is called a (one-to-many)

matching for the matching market M = (𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆) if for all 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆,

1. 𝜇(𝑥) ∈ 𝑆 ∪ {∅},

2. 𝜇(𝑠) ⊆ 𝑋 , and

3. 𝜇(𝑥) = 𝑠 if and only if 𝑥 ∈ 𝜇(𝑠).

We abuse notation and write 𝜇(𝑥) for the sole element when 𝑥 ∈ 𝑋 . We say an agent 𝑎 ∈ 𝑋 ∪ 𝑆

remains unmatched under 𝜇 if 𝜇(𝑎) = ∅.

In order to state the definition of a stable matching, we first define a blocking pair, that

blocks a matching from being stable.
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Definition 40 (Blocking pair). Given a matching 𝜇 for market M = (𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆),

we say a student-school pair (𝑠, 𝑥) is a blocking pair for 𝜇 if both the student and the school

would prefer being matched to each other than the partners they were assigned to in the matching.

Formally (𝑠, 𝑥) is a blocking pair if

1. 𝑠 ≻𝑥 𝜇(𝑥), and

2. 𝑥 ∈ C𝑠 (𝜇(𝑠) ∪ {𝑥}).

If a blocking pair exists for 𝜇 in M, we say 𝜇 admits a blocking pair, and the pair blocks the

matching.

Finally we define a stable matching as one that is individually rational for all agents

and is absent of blocking pairs.

Definition 41 (Stable matching). A matching 𝜇 is stable for the market M = (𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆)

if the following hold:

1. (Individual rationality for students.) For all 𝑥 ∈ 𝑋 , either 𝜇(𝑥) = ∅ or 𝜇(𝑥) is an acceptable

school for 𝑥.

2. (Individual rationality for schools.) For all 𝑠 ∈ 𝑆, C𝑠 (𝜇(𝑠)) = 𝜇(𝑠).

3. (No blocking pairs.) 𝜇 admits no blocking pairs in M.

Intuitively, for agents to participate in a given matching market, they must have a

guarantee that the resultant matching produced by the mechanism respects their prefer-

ences. In particular, the first two conditions of stability require that the matching respects

the preferences of agents by not matching them to undesirable partners. The last condi-

tion, requiring the absence of blocking pairs, guarantees that agents are not incentivized

to deviate from the matching, which also motivates calling such a matching stable.

Stability is a stringent condition, and in particular, is not defined by who is matched

to whom, but rather by who is not matched to whom. It is therefore not obvious that such
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matchings ought to exist in the first place. A seminal result in the field is the guaranteed

existence of stable matchings via the Deferred Acceptance algorithm.

The Deferred Acceptance Algorithm: The following algorithm is an extension of the

classical Gale-Shapley [1] algorithm that allows one to find a stable matching in one-to-

many markets defined with choice functions [109].

Algorithm 42 (Deferred Acceptance).

Input:

A matching market M = (𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆).

Procedure:

1. (Initialization.) Set every student 𝑥 ∈ 𝑋 to be unassigned.

2. (Proposal.) Each unassigned student 𝑥 ∈ 𝑋 applies to their most preferred school that has

not yet rejected them.

3. (Deferred Acceptance.) Each school 𝑠 ∈ 𝑆 considers the 𝑇 of students that have currently

applied to the school. It tentatively accepts the set of students C𝑠 (𝑇) given by its choice

function, and rejects all other students in 𝑇 \ C𝑠 (𝑇).

4. (Loop Condition.) If any student was rejected in the last step, such a student becomes unas-

signed, and the algorithm returns to the proposal stage.

5. (Termination.) If no student was rejected, the algorithm terminates. Every school 𝑠 ∈ 𝑆

accepts the students currently tentatively accepted, and we set 𝜇(𝑠) equal to this set. For

student 𝑥 ∈ 𝑋 , we set 𝜇(𝑥) equal to the school they were accepted to, or ∅ if they are unas-

signed.

Output:

A matching 𝜇 for M.
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The next theorem states that when applied to a market with path-independent choice

functions, the algorithm produces a stable matching. For a proof, we refer the reader

to [103, 110, 111].

Theorem 43 (Deferred Acceptance). Applying Algorithm 42 to a matching market M =

(𝑋, 𝑆, {≻𝑥}𝑥∈𝑋 , {C𝑠}𝑠∈𝑆) where C𝑠 is path-independent for every 𝑠 ∈ 𝑆 yields a stable matching 𝜇

for M. The algorithm terminates in time polynomial in the number of agents and time required to

evaluate a choice function. Furthermore, for every other matching 𝜇′ for M, every student 𝑥 ∈ 𝑋

weakly prefers 𝜇 to 𝜇′.

We make a few remarks on this algorithm and its implications. First note that if the

choice function of a school were not substitutable, then that school may reject some stu-

dent that they would later prefer when offered in conjunction with another one. It is

therefore clear why substitutability is required.

Note also that the result itself is quite remarkable: not only does it guarantee that a sta-

ble matching can always be found in polynomial time when choice functions are readily

available, but the last property implies that this matching is preferred by all students.

It is no coincidence that when the students propose to schools at each round, the out-

put is optimal for students. Indeed, if the schools proposed to students2, we would find a

(possible different) matching such that it would be optimal for schools. Stable matchings

have rich structure and the sets of stable matchings between these two extrema can be

efficiently enumerated. This rich structure may be exploited to implement many efficient

algorithms over stable matchings. While many such results are well known in the case

that strict preference lists are used, recent work in [112] shows that such structure exists

also when preferences are defined by quota-filling choice functions.

2Although in this work we are mostly interested in the one-to-many student-proposing version of De-
ferred Acceptance, both the algorithm and the proof may be naturally extended to the case where schools
propose to students, and the case of many-to-many matching where every agent has preferences given by
choice functions.
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Elementary classes of choice functions: We now define two simple classes of choice

functions that are built from preference lists.

Definition 44 (𝑞-responsive choice function). Given a strict preference list ≻ over 𝑋 and a

quota 𝑞, we define the 𝑞-responsive choice function C≻ over 𝑋 as C≻ (𝑆) = max≻ (𝑆, 𝑞) for all

𝑆 ⊆ 𝑋 (where the notation max≻ (𝑆, 𝑞) denotes the top-𝑞 elements of 𝑆 according to ≻).

Applying Algorithm 42 to a market M where all choice functions are responsive yields

exactly the classic Deferred Acceptance algorithm of [1]. Choice functions therefore gen-

eralize strict preference lists. Another simple class of choice functions that is strictly more

general than the responsive class is that of lexicographic choice [113].

Definition 45 (Lexicographic choice function). Given 𝑞 strict preference lists over 𝑋 , denoted

{≻𝑖}𝑖=1,...,𝑞, the lexicographic choice function C is defined as follows. For 𝑆 ⊆ 𝑋 , we let 𝐶1 =

max≻1 𝑆, and let 𝐶𝑖 = max≻𝑖
𝑆 \ 𝐶𝑖−1 for 𝑖 = 2, . . . , 𝑞, finally, we let C(𝑆) = 𝐶𝑞. In other words,

we think of dividing the school into 𝑞 ordered seats, each seat at its turn using a preference list to

choose its favorite remaining student.

It is straightforward to show that both 𝑞-responsive and lexicographic choice functions

are path-independent and quota-filling. By choosing all the preference lists for a lexico-

graphic choice function to coincide, we recover exactly a 𝑞-responsive choice functions.

Every responsive choice functions is therefore also lexicographic.

3.3 Models and Results

In this section, we present our main theoretical results.

3.3.1 The Offline Model of Stable Matching

As per Theorem 43, the Deferred Acceptance algorithm runs in time polynomial in

the number of agents and the time taken to evaluate a choice function. Most works in

the literature assume what we call the oracle model, where the central planner may query
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any choice functions at any point during the algorithm in 𝑂 (1) time. In this model, the

Deferred Acceptance procedure clearly terminates in polynomial time.

However, in the real world, such an assumption is often much too strong. In the con-

text of school choice for instance, school districts generally utilize an offline model. In this

model, all agents first compile their preferences, then communicate them to the central

planner before the algorithm is executed. The central planner then proceeds to compute

the stable matching offline with no further interaction with the agents during the algo-

rithm execution. For the Deferred Acceptance algorithm to terminate in polynomial time

under this offline model, we therefore require that each choice function can be written

down and communicated to the central planner in polynomial time.

This model is very common in the real world, especially in the case where the match-

ing occurs rarely, the market is large, or it takes significant time for agents to compile their

preferences. For instance, the New York City public high school matching currently uses

the offline model, with each school submitting a 𝑞-responsive choice function (where 𝑞

is the number of seats per school) to the Department of Education (DOE). It would be

impossible in practice for the DOE to coordinate with schools to solicit their preferences

during the matching process (which in practice is run on a computer in a matter of sec-

onds).

The following somewhat informal lemma shows how the size of the respective class

of preference is intimately tied to the space and time required to communicate them, and

therefore the running time of the Deferred Acceptance algorithm in the offline model.

Lemma 46. Let X be a finite set with cardinality |X|. Any deterministic communication scheme

that can uniquely identify any element 𝑥 ∈ X must use Θ(log |X|) bits in the worst case, and this

bound is achievable.

Counting arguments of this nature are well known in theoretical computer science, we

provide a brief proof in Appendix C.1. It is not hard to see that the number of responsive
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choice functions over any set of students 𝑋 is at most3 𝑂 ( |𝑋 + 1|!), which means that

they can be communicated in time 𝑂 ( |𝑋 | log |𝑋 |), and therefore the Deferred Acceptance

algorithm using preference lists terminates in polynomial time in the offline model.

In [114] the authors count the size of various classes of choice functions, including the

class of path-independent choice functions, which they show to be doubly exponential in

size. This implies that an arbitrary path-independent choice function cannot be commu-

nicated to the central planner in polynomial time, and so cannot be used to produce an ef-

ficient Deferred Acceptance algorithm. In [112], the authors show that a further subset of

these choice functions that satisfy the property of cardinal monotonicity (see Section 3.4.2)

is still doubly exponential.

We prove the following theorem, that shows that even in the case of quota-filling,

path-independent choice functions, the class is too large.

Theorem 47. The number of substitutable and quota-filling choice functions on ground set 𝑋

with |𝑋 | = 𝑛 is 2
Ω

(
2⌊𝑛/2⌋−1√
⌊𝑛/2⌋−1

)
.

The proof is deferred to Section 3.4.1. The following corollary summarizes the impli-

cations of this fact.

Corollary 48. Substitutable and quota-filling choice functions cannot be communicated efficiently,

in particular, the Deferred Acceptance algorithm in the offline model using such choice function

does not terminate in time polynomial in the number of agents.

Proof. This follows from Theorem 47 and Lemma 46. □

A key obstacle to the use of many practical choice functions in the real world is there-

fore the communication cost of choice functions. In the next section, we propose a class of

choice functions that lead to a polynomial time algorithm when used in the offline model

for stable matching.

3If preference lists are complete, they number |𝑋 |!, but if they may be incomplete, we can add an extra
“tombstone” element and discard any students after it, which gives an upper bound of |𝑋 + 1|!.
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3.3.2 Kuhn Choice Functions

The lack of efficient representation for arbitrary path-independent and quota-filling

choice functions shown in the last section motivates our search for a more tractable sub-

class. We now propose the class of so-called Kuhn choice functions as a practical choice.

Definition 49 (Kuhn choice function). Consider some ground set 𝑋 and a quota 𝑞. Let 𝐺 be

the complete bipartite graph on [𝑞] ∪ 𝑋 . For each edge (𝑖, 𝑗) ∈ [𝑞] × 𝑋 , define a strictly positive

weight 𝑤(𝑖, 𝑗) > 0.

The Kuhn choice function C(𝑆) with weights 𝑤 is defined for all 𝑆 ⊆ 𝑋 by the set of nodes of

𝑆 that are matched in the maximum-weight matching in the subgraph [𝑞] × 𝑆. That is

C(𝑆) = 𝑆 ∩
(
arg max
𝑀∈M[𝑞 ]∪𝑆

{𝑤(𝑀)}
)
, (3.1)

where M[𝑞]∪𝑆 is the set of all matchings in the subgraph of 𝐺 restricted to nodes in [𝑞] ∪ 𝑆. We

require that the maximizer in the definition of C(𝑆) is unique.

The naming is after Harold Kuhn, one of the early pioneers of the Hungarian method

for finding maximum-weight matchings in bipartite graphs [115], work that also shows

that Kuhn choice functions can be evaluated efficiently for any 𝑆 ⊆ 𝑋 .

Kuhn choice functions have the following natural interpretation: divide the school

into 𝑞 seats (some of which may be identical), then for every seat 𝑖 and every student 𝑗 ,

assign a positive value 𝑤(𝑖, 𝑗) to that seat-student pair. The Kuhn choice function given

by these weights now chooses from any offered set of students, the subset that maximizes

total value. Such values may represent the “aptitude” of students for the various seats,

or for instance some monetary utility of assigning that student to that given seat. This

simple interpretation and easy construction is a key merit of Kuhn choice functions. We

define the value of the maximum-weight matching itself as the valuation of the Kuhn

choice function.
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Definition 50 (Valuation). Let C be a Kuhn choice function given by weights 𝑤, then define the

valuation of C as

𝑤C (𝑆) = max
𝑀∈M[𝑞 ]∪𝑆

{𝑤(𝑀)} .

Similar objects based on maximum-weight matchings have been studied widely in the

literature in different areas. Shapley may have been the first to show they satisfy a certain

complementarity condition [116]. The valuation function on the other hand, is widely

studied in the context of the Kelso-Crawford market of indivisible goods [117] where it

is known by various names, such as an OXS valuation. These are a strict subclass of all

gross substitutes valuation functions (a sufficient condition for an equilibrium to exist in

such markets). The gross substitutes condition is known to be equivalent to the concept

of 𝑀 ♮-concavity [118] in the field of discrete convex analysis. Similarly for 𝑆 with |𝑆 | ≤ 𝑞,

𝑤C is known to be a valuated matroid. We refer the reader to [119] for a comprehensive

survey on gross substitutes valuation functions.

The requirement that all maximizers be unique—the unique-maximizer property—is

what sets Kuhn choice functions apart from related objects. If all maximizers were not

distinct, then C would not necessarily produce a well-defined choice function (but would

produce a choice correspondence instead [120]). To illustrate, observe that without the

unique-maximizer property, one could set all weights equal, whereby every matching

would be maximal. Then the task of deciding which set of students to choose would re-

duce to some kind of tie-breaking rule which would need to encapsulate all the structure

of the choice function.

We next turn to properties of Kuhn choice functions.

Lemma 51. Kuhn choice functions are quota-filling and path-independent.

The proof is deferred to Section 3.4.2. Furthermore, Kuhn choice functions can indeed

be efficiently communicated.
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Theorem 52. The encoding length of any Kuhn choice function is polynomial in the size of the

ground set.

The proof appears in Section 3.4.2. In particular, Theorem 52 guarantees that when

used in the offline model, Kuhn choice functions yield a polynomial time algorithm for

stable matching.

Recognition of Kuhn choice functions: While Kuhn choice functions are simple to con-

struct, it is natural to ask whether one can easily tell if some arbitrary choice function is

Kuhn or not. The authors in [121] show that given a choice function, verifying whether

it satisfies substitutability itself takes an expected number of queries exponential in |𝑋 |,

the size of the ground set. We therefore obviously require that choice functions be path-

independent and quota-filling. In contrast, there may be some elegant structure of certain

subclasses of choice function that would allow us to infer how they act on many sets

without querying each one directly.

We prove the following theorem which shows that for 𝑞 ≥ 3, determining whether a

given choice function is Kuhn or not cannot be done in a polynomial number of queries

in 𝑞.

Theorem 53. For any 𝑞 ≥ 3, there exists 𝑛 = 𝑂 (𝑞), a Kuhn choice function C over 𝑋 = [𝑛], and

a family H of non-Kuhn 𝑞-quota-filling path-independent choice functions over 𝑋 such that an

oracle must query C on 2Ω(𝑞) subsets of 𝑋 in order to distinguish C from H .

We defer the proof to Section 3.4.3. While this result implies that there is no hope in

deciding whether a given choice function is Kuhn or not efficiently, it may still be possible

that given a Kuhn choice function, one could efficiently find find weights that realize it

via some form of oracle access. The difficulty in finding such weights is largely in the

assignment problem: for every 𝑆 ⊆ 𝑋 one must find an assignment of the 𝑞 seats to the 𝑞

chosen students in C(𝑆), and these assignments must furthermore be somehow consistent

across every subset 𝑆 ⊆ 𝑋 . However, once one has chosen an assignment, finding the
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exact weights themselves (or whether they exist) can be done in polynomial time with a

simple linear program. See Section 3.5 for a discussion on computational aspects.

Before we explore this path further, we discuss some existing results on rationalizabil-

ity of choice functions.

Rationalizability and the Value Oracle: In the recent work [122], the authors show that

a choice function is path-independent if and only if it is rationalizable by a utility func-

tion that satisfies ordinal concavity. This result is summarized in the next definition and

theorem.

Definition 54 (Rationalizability). A choice function C on 𝑋 is rationalizable by a utility func-

tion 𝑢 : 2𝑋 → R if for all 𝑆 ⊆ 𝑋 ,

C(𝑆) = arg max
𝑇⊆𝑆

{𝑢(𝑇)} ,

where the maximizer is unique.

Clearly all utility functions give rise to a choice function of some form, so the question

is then what must be demanded of the utility function to guarantee path-independence.

This question is answered by the following result.

Theorem 55. A choice function C on 𝑋 is path-independent, if and only if there exists a utility

function 𝑢 : 2𝑋 → R that rationalizes C such that for all 𝑆, 𝑆′ ⊆ 𝑋 and 𝑥 ∈ 𝑆 \ 𝑆′, there exists

𝑥′ ∈ (𝑆′ \ 𝑆) ∪ {∅} such that either 𝑢(𝑆) < 𝑢(𝑆 − 𝑥 + 𝑥′) or 𝑢(𝑆′) < 𝑢(𝑆′ − 𝑥′ + 𝑥).

See [122] for a proof, which proceeds by constructing an appropriate utility function.

Rationalizability of arbitrary choice functions is very similar to the definition of Kuhn

choice functions, with the difference being that the Kuhn utility function is the maximum-

weight matching in the appropriate subgraph. In other words, a choice function C is

Kuhn if and only if the valuation 𝑤C rationalizes C.
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As remarked earlier, finding weights itself is not difficult once an assignment from

[𝑞] to C(𝑆) has been found for every 𝑆 ⊆ 𝑋 . A slightly easier question is then whether

given the actual valuation 𝑤C of a Kuhn choice function C allows one to find the weights

themselves easily. We call this the valuation-oracle model. We show that in the case that

𝑞 = 2, one can find structure in the weights given the valuation.

Theorem 56. Under the valuation-oracle model, given a 𝑞-quota-filling choice function C with

𝑞 = 2, one can efficiently verify whether C is Kuhn or not and if it is, find weights that rationalize

it.

The proof is deferred to Section 3.4.3. The case for 𝑞 ≥ 3 is an open problem.

In this section we have introduced Kuhn choice functions and shown that they satisfy

several desirable properties. We have argued that they are readily usable if specified di-

rectly via weights, but deciding if a given choice function is Kuhn or finding the weights

with only oracle access is difficult. We next turn our attention to understanding the hier-

archy of choice functions.

3.3.3 Approximability and the Hierarchy of Choice

Up to this point, we have studied various classes of choice functions. To more gran-

ularly understand the relationship between these different classes, we now construct a

hierarchy of choice functions, and discuss approximability between them.

Definition 57 (Classes of choice functions). Let 𝑋 be a ground set of students, with |𝑋 | = 𝑛,

and let 𝑞 = 1, 2, . . . , 𝑛 be some quota. We define the following classes of choice functions over 𝑋 :

• P𝑛: all choice functions that are path-independent;

• Q𝑛
𝑞 : all choice functions that are path-independent and 𝑞-quota-filling;

• K𝑛
𝑞 : all choice functions that are Kuhn with 𝑞 seats;

• L𝑛
𝑞: all choice functions that are lexicographic with 𝑞 seats; and
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• R𝑛
𝑞: all choice functions that are 𝑞-responsive.

From Section 3.2, we know for all 𝑞, 𝑛,

R𝑛
𝑞 ⊆ L𝑛

𝑞 ⊆ K𝑛
𝑞 ⊆ Q𝑛

𝑞 ⊆ P𝑛.

To go beyond simple statements of inclusion, we define approximability for quota-

filling choice functions as follows.

Definition 58 (𝛼-approximability). Let C, C′ ∈ Q𝑛
𝑞 , then we say C 𝛼-approximates C′ if for all

𝑆 ⊆ 𝑋 , and |𝑆 | > 𝑞,

|C(𝑆) ∩ C′(𝑆) | ≥ 𝛼𝑞.

Note that if C, C′ ∈ Q𝑛
𝑞 , then C(𝑆) = C′(𝑆) for all 𝑆 ⊆ 𝑋 with |𝑆 | ≤ 𝑞.

Our first result in this realm is that for any path-independent quota-filling choice func-

tion, one can always find a preference list that matches at least one seat correctly.

Lemma 59 (1/𝑞-approximability of Q𝑛
𝑞 with R𝑛

𝑞). Let C ∈ Q𝑛
𝑞 be arbitrary, then there exists

some C′ ∈ R𝑛
𝑞 such that C′ 1/𝑞-approximates C.

The next result, however, shows that in the worst case responsive choice functions fail

to approximate even lexicographic choice better than this.

Lemma 60 (2/𝑞-inapproximability of L𝑛
𝑞 with R𝑛

𝑞). Given 𝑞 ≥ 3, there exists 𝑛 = 𝑂 (𝑞2), and

C ∈ L𝑛
𝑞 such that for all C′ ∈ R𝑛

𝑞, C′ does not 2/𝑞-approximate C.

Further, a similar gap exists between quota-filling choice functions and Kuhn choice

functions.

Lemma 61 (2/𝑞-inapproximability of Q𝑛
𝑞 with K𝑛

𝑞 ). There exists 𝑛, 𝑞 ∈ N and C ∈ Q𝑛
𝑞 such

that for all C′ ∈ K𝑛
𝑞 , C′ does not 2/𝑞-approximate C.
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Our final approximability result shows that the approximation neighborhood of re-

sponsive choice functions is doubly exponential within quota-filling choice functions.

Lemma 62. For 𝑛 = 𝑂 (𝑞), there exists C ∈ R𝑛
𝑞 whose 1/𝑞-approximation neighborhood is of size

2
Ω

(
2𝑞−1√
𝑞−1

)
in Q𝑛

𝑞 .

These results together show that while responsive choice can approximate quota-

filling choice up to one seat, a big gap exists in what can be represented between re-

sponsive and lexicographic choice, and between Kuhn and quota-filling choice.

3.4 Proofs of Main Results

3.4.1 Number of quota-filling choice functions

In this section we prove Theorem 47. We begin by defining cardinal monotonicity, a

requirement on the size of choice that is weaker than that of being quota-filling.

Definition 63 (Cardinal monotonicity). A choice function C is cardinal monotone if for all

𝑆 ⊆ 𝑋 and all 𝑇 ⊆ 𝑆, |C(𝑇) | ≤ |C(𝑆) |.

We will proceed by embedding a large class of cardinal monotone choice functions

into the set of quota-filling choice functions. To do so, we make use of the completion of

a choice function with a preference list, which allows us to produce quota-filling choice

functions from non-quota-filling ones.

Definition 64. Let C be a choice function on ground set 𝑋 and let ≻ be a strict preference list over

𝑋 . Suppose there is some 𝑞 such that for all 𝑆 ⊆ 𝑋 , |C(𝑆) | ≤ 𝑞. Define the (𝑞, ≻)-completion of C

to be the set function C′ defined by

C′(𝑆) = C(𝑆) ∪ 𝑀 (𝑆),
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for all 𝑆 ⊆ 𝑋 , where

𝑀 (𝑆) = max
≻

(𝑆 \ C(𝑆), 𝑞 − |C(𝑆) |).

Here max≻ (𝑇, 𝑘) are the first 𝑘 elements of 𝑇 according to ≻. In other words C′(𝑆) picks C(𝑆)

then selects the ≻-top elements left in 𝑆 to fill it up to 𝑞 elements.

The next lemma shows that the completion is also substitutable and now quota-filling.

Lemma 65. Let C be a substitutable and cardinal monotone choice function on 𝑋 . Suppose ≻

is a strict preference list over 𝑋 and 𝑞 ≥ max𝑆⊆𝑋 |C(𝑆) |. Then the (𝑞, ≻)-completion of C is

substitutable and quota-filling with quota 𝑞.

Proof. Let C′ be the (𝑞, ≻)-completion. C′ is clearly quota-filling. For substitutability we

must show that for 𝑇 ⊆ 𝑆, we have C′(𝑆) ∩ 𝑇 ⊆ C′(𝑇). By the substitutability of C, we

have (in the notation of Definition 64)

C′(𝑆) ∩ 𝑇 = (C(𝑆) ∩ 𝑇) ∪ (𝑀 (𝑆) ∩ 𝑇) ⊆ C(𝑇) ∪ (𝑀 (𝑆) ∩ 𝑇)

By construction, C(𝑇) ⊆ C′(𝑇). Now suppose 𝑥 ∈ 𝑀 (𝑆) ∩𝑇 and 𝑥 ∉ C(𝑇). By substitutabil-

ity of C, 𝑇 \ C(𝑇) ⊆ 𝑆 \ C(𝑆), so 𝑥 ∈ 𝑆 \ C(𝑆). Therefore, since 𝑥 is among the 𝑞 − |C(𝑆) |

largest elements (by ≻) in 𝑆\C(𝑆), it must also be among the 𝑞−|C(𝑆) | largest in the subset

𝑇 \C(𝑇). Further 𝑞−|C(𝑇) | ≥ 𝑞−|C(𝑆) | by cardinal monotonicity, so 𝑥 ∈ 𝑀 (𝑇) ⊆ C′(𝑇). □

The key to Theorem 47 is now that one can expand the ground set appropriately and

choose the right preference list to injectively embed cardinal monotone choice functions

in the class of quota-filling ones.

We now show that one can choose the preference list ≻ in such a way that a set 𝑋 and

a preference list ≻ over 𝑋 such that the completion yields an injective map from the set of

cardinal monotone choice functions to quota-filling ones.
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Theorem 66. For each 𝑞 ≥ 1, there is an injective map between substitutable, cardinal monotone

choice functions on 𝑞 elements and substitutable 𝑞-quota-filling choice functions on 2𝑞 elements.

Proof. Let 𝑋 be the ground set of the cardinal monotone choice functions with |𝑋 | = 𝑞,

and let 𝑋′ be a “copy” of 𝑋 such that 𝑋 ∩ 𝑋′ = ∅. Let ≻ be any strict preference list over

𝑋 ∪ 𝑋′ such that for all 𝑥′ ∈ 𝑋′ and 𝑥 ∈ 𝑋 , 𝑥 ≻ 𝑥′. We now describe the injective mapping

of cardinal monotone choice functions over 𝑋 to quota-filling choice functions on 𝑋 ∪ 𝑋′.

Let C be any substitutable, cardinal monotone choice function with ground set 𝑋 . Now

define C′ to be the (𝑞, ≻)-completion of C on 𝑋 ∪ 𝑋′ (with C extended to 𝑋 ∪ 𝑋′ in such a

way that it never accepts any elements in 𝑋′). C′ is then 𝑞-quota-filling and substitutable

by Proposition 65. Furthermore for 𝑆 ⊆ 𝑋 , we get C′(𝑆 ∪ 𝑋′) ∩ 𝑋 = C(𝑆), so the mapping

is injective. □

In [112], the authors prove the following theorem that shows that the number of sub-

stitutable and cardinal monotone choice functions is doubly exponential.

Theorem 67. The number of substitutable and cardinal monotone choice functions on ground set

𝑋 with |𝑋 | = 𝑛 is 2Ω
(

2𝑛−1
√
𝑛−1

)
.

Now the proof of Theorem 47 follows easily.

Theorem 47. The number of substitutable and quota-filling choice functions on ground set 𝑋

with |𝑋 | = 𝑛 is 2
Ω

(
2⌊𝑛/2⌋−1√
⌊𝑛/2⌋−1

)
.

Proof. Combine Theorem 66 and Theorem 67. □

3.4.2 Properties of Kuhn choice functions

In this section we prove Lemma 51 and Theorem 52. We begin with the former.

Lemma 68. Kuhn choice functions are quota-filling and path-independent.
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Proof. Kuhn choice functions are clearly quota-filling: since all weights are strictly posi-

tive and the graph is complete, the maximum weight matching will always contain ex-

actly 𝑞 elements or as many as possible. It remains to show that such choice functions are

substitutable.

Suppose 𝑇 ⊆ 𝑆 ⊆ 𝑋 with 𝑏 ∈ C(𝑆), and assume for a contradiction that 𝑏 ∉ C(𝑇 ∪ {𝑏}).

Let 𝑀 be the maximum-weight matching on [𝑞] ∪ 𝑆, and 𝑀′ the one on [𝑞] ∪ 𝑇 ∪ {𝑏}. If

both matchings are not [𝑞]-perfect, the result follows trivially, so assume this is not the

case.

Since 𝑏 is only matched in 𝑀 , there exists some maximal 𝑀-alternating path 𝑃 in

𝑀 ∪ 𝑀′ starting at 𝑏. Note that the first edge is in 𝑀 and goes from 𝑏 to [𝑞], and since

both matchings are [𝑞]-perfect, we can continue the path back to 𝑋 . But this edge is in

𝑀′, so we are back to 𝑇 . By similar reasoning, we conclude that 𝑃 is of even length and

contained in [𝑞] ∪ 𝑇 ∪ {𝑏}.

𝑀 △ 𝑃 is therefore a maximal matching in [𝑞] ∪ 𝑆, and 𝑀′△ 𝑃 is a maximal matching in

[𝑞] ∪𝑇 ∪ {𝑏}. If the weight of 𝑃 were positive, then 𝑀 would not be of maximum weight,

and if it were negative, 𝑀′ would not be of maximum weight (and the weight cannot be

0 as the edge weights are strictly positive). This is the required contradiction. □

We now prove Theorem 52. We need the following result, which is Theorem 10.2

of [123].

Theorem 69 (Bounds on facet and vertex complexity). Let 𝑃 be a rational polyhedron in R𝑛

of facet complexity 𝜑 and vertex complexity 𝜈, then 𝜈 ≤ 4𝑛2𝜑 and 𝜑 ≤ 4𝑛2𝜈.

The facet complexity of a polyhedron 𝑃 ⊆ R𝑛 is the smallest integer 𝜑 ≥ 𝑛 such that

there is a set of rational inequalities 𝐴𝑥 ≤ 𝑏 with the size of each inequality being at most

𝜑. The vertex complexity is similarly the smallest integer 𝜈 ≥ 𝑛 such that there are vertices

𝑥1, . . . , 𝑥𝑘 and vectors 𝑦1, . . . , 𝑦𝑡 with size at most 𝜈 such that 𝑃 is the convex hull of the 𝑥𝑖

plus the cone formed by the 𝑦 𝑗 .
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The following is a direct consequence of this theorem.

Corollary 70. If the rational system 𝐴𝑥 ≤ 𝑏 has each inequality with size at most ℓ and it has a

vertex, then each of its vertices has size at most 4𝑛2ℓ.

We now use this corollary to prove Theorem 52.

Theorem 52. The encoding length of any Kuhn choice function is polynomial in the size of the

ground set.

Proof. Let C be any Kuhn choice function with 𝑞 seats on ground set 𝑋 with |𝑋 | = 𝑛. There

are 𝑛𝑞 weights that need to be written down, and so it remains to show that the encoding

size of each weight is polynomial in 𝑛𝑞.

We will apply the last corollary to an appropriately chosen polyhedron. Let 𝑤(𝑖, 𝑗) for

(𝑖, 𝑗) ∈ [𝑞] × 𝑋 be the weights for C. Since we know the weights, we also know for every

𝑆 ⊆ 𝑋 what the maximum-weight matching on [𝑞] × 𝑆 is. Denote this by 𝑀𝑆. It therefore

holds that any set of weights, say 𝑤′(𝑖, 𝑗) for (𝑖, 𝑗) ∈ [𝑞]×𝑋 , yield the same choice function

if for all 𝑆 ⊆ 𝑋 ,

∑︁
𝑖∈[𝑞]

𝑤′(𝑖, 𝑀𝑆 (𝑖)) >
∑︁
𝑖∈[𝑞]

𝑤′(𝑖, 𝑀 (𝑖)), ∀𝑀 ∈ M[𝑞]×𝑆 \ {𝑀𝑆} ,

where again M[𝑞]×𝑆 is the set of all matchings in the complete bipartite graph [𝑞] × 𝑆. It

is not hard to see that non-negative affine scaling of weights does not change the choice

function they represent4, which means we can replace the strict inequality by a non-strict

inequality if we add +1 to the right hand side.

Each of these inequalities now has 2𝑞 + 1 terms, and each term has a coefficient of ±1,

so the facet complexity is 𝑂 (𝑞). Note that the system has 𝑛𝑞 variables. By construction,

this rational system is non-empty and since 𝑤′ ≥ 0 holds, it must have a vertex. Applying

Corollary 70 directly gives us an upper bound of 𝑂 (𝑛2𝑞3) on the size of a weight function

realizing the Kuhn choice function, which completes the proof. □

4That is, if 𝑤(𝑖, 𝑗) are weights for C, then so are 𝑎 · 𝑤(𝑖, 𝑗) + 𝑏 for all 𝑎 > 0, 𝑏 ≥ 0.
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We note that an alternative proof can be obtained via the Frank-Tardos preprocessing

scheme [124], as pointed out to us by László Végh [125].

3.4.3 Complexity of Kuhn recognition

We now prove Theorem 53 and Theorem 56.

Notation: In this section we use the following notation. For a family of sets A and a set

𝐵 with 𝐵 ∩ ⋃A = ∅, we denote A ⊕ 𝐵 = {𝐴 ∪ 𝐵 : 𝐴 ∈ A}. For a set 𝐴 and 𝑘 ∈ N, denote(𝐴
𝑘

)
= {𝑇 ⊆ 𝐴 : |𝑇 | = 𝑘}. For 𝑙, 𝑟 ∈ Z with 𝑙 ≤ 𝑟, denote [𝑙..𝑟] = {𝑖 ∈ Z : 𝑙 ≤ 𝑖 ≤ 𝑟}. We denote

by > the natural order on N, and define 𝐶> as the canonical responsive choice function on

[𝑛].

Proof of THeorem 53: We first show how to construct a family of almost-lexicographic

choice functions over 𝑋 = [𝑛].

Definition 71. Let 𝑞 ≥ 3 and 𝑛 ≥ 𝑞 + 3, and let 𝐴 ⊆ [7..𝑛] with |𝐴| = 𝑞 − 3 be arbitrary. We

define the 𝐴-modification of the canonical 𝑞-responsive choice function C𝐴 as follows. For all

𝑆 ⊆ 𝑋 we set

C𝐴 (𝑆) =


C> (𝑆) \ {2} ∪ {1} , if 𝑆 ∈ F (𝐴),

C> (𝑆), otherwise,

where C> is the canonical 𝑞-responsive choice function (that chooses the largest available elements

in 𝑆), and

F (𝐴) = {{1, 2, 4, 5} , {1, 2, 3, 6} , {1, 2, 5, 6}} ⊕ 𝐴.

The 𝐴-modification is also quota-filling and path-independent.

Lemma 72. For any 𝐴, C𝐴 is quota-filling and path-independent.
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Proof. The fact that C𝐴 is quota-filling follows from the definition. It remains to show C𝐴

is substitutable, that is, for all 𝑇 ⊆ 𝑆 ⊆ 𝑋 , if 𝑧 ∈ C𝐴 (𝑆) then 𝑧 ∈ C𝐴 (𝑇 ∪ {𝑧}). From the

definition of C𝐴 and the fact that C> is substitutable, we only need to check the case when

𝑧 = 1 and 𝑧 = 2 because on other elements, C𝐴 acts identically to C>. In both cases if

|𝑆 | ≤ 𝑞 + 1 (this includes the case 𝑆 ∈ F (𝐴)), the result follows because C𝐴 is quota-filling;

and for any |𝑆 | ≥ 𝑞 + 2, we have {1, 2} ∩ C𝐴 (𝑆) = ∅ since they are the two least elements.

This completes the proof. □

To show C𝐴 is not Kuhn, we need the following fact about Kuhn choice functions

interpreted as gross substitutes valuations.

Lemma 73. Let C be a Kuhn choice function, then for all 𝑆, 𝑇 ⊆ 𝑋 with |𝑆 | = |𝑇 | = 𝑞, and for all

𝑠 ∈ 𝑆 \ 𝑇 , we have

𝑤C (𝑆) + 𝑤C (𝑇) ≤ max
𝑡∈𝑇\𝑆

{𝑤C (𝑆 \ {𝑠} ∪ {𝑡}) + 𝑤C (𝑇 \ {𝑡} ∪ {𝑠})} .

Proof. This is the valuated matroid exchange property, but 𝑤C is a valuated matroid, see

Lemma 8.5 of [119]. □

Lemma 74. C𝐴 is not a Kuhn choice function.

Proof. Assume for contradiction that C𝐴 were Kuhn and there were some weights 𝑤(𝑖, 𝑗),

𝑖 ∈ [𝑞], 𝑗 ∈ [𝑛] that realize C𝐴. In this proof, we write 𝑎 = 3, 𝑏 = 4, 𝑐 = 5 and 𝑑 = 6, and

𝑤 = 𝑤C𝐴
for clarity. Observe that since |𝐴| = 𝑞 − 3, we may apply Lemma 73 to the union

of 𝐴 with 3 distinct elements from {1, 2, 𝑎, 𝑏, 𝑐, 𝑑}.
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By the definition of C𝐴, it holds that

𝑤(𝐴 ∪ {1, 2, 𝑎, 𝑏}) = 𝑤(𝐴 ∪ {2, 𝑎, 𝑏}) > 𝑤(𝐴 ∪ {1, 𝑎, 𝑏}),

𝑤(𝐴 ∪ {1, 2, 𝑎, 𝑐}) = 𝑤(𝐴 ∪ {2, 𝑎, 𝑐}) > 𝑤(𝐴 ∪ {1, 𝑎, 𝑐}),

𝑤(𝐴 ∪ {1, 2, 𝑎, 𝑑}) = 𝑤(𝐴 ∪ {1, 𝑎, 𝑑}) > 𝑤(𝐴 ∪ {2, 𝑎, 𝑑}),

𝑤(𝐴 ∪ {1, 2, 𝑏, 𝑐}) = 𝑤(𝐴 ∪ {1, 𝑏, 𝑐}) > 𝑤(𝐴 ∪ {2, 𝑏, 𝑐}),

𝑤(𝐴 ∪ {1, 2, 𝑏, 𝑑}) = 𝑤(𝐴 ∪ {2, 𝑏, 𝑑}) > 𝑤(𝐴 ∪ {1, 𝑏, 𝑑}),

𝑤(𝐴 ∪ {1, 2, 𝑐, 𝑑}) = 𝑤(𝐴 ∪ {1, 𝑐, 𝑑}) > 𝑤(𝐴 ∪ {2, 𝑐, 𝑑}).

Now define

𝑋 = 𝑤(𝐴 ∪ {2, 𝑎, 𝑏}) + 𝑤(𝐴 ∪ {1, 𝑐, 𝑑}),

𝑌 = 𝑤(𝐴 ∪ {2, 𝑎, 𝑐}) + 𝑤(𝐴 ∪ {2, 𝑏, 𝑑}),

𝑍 = 𝑤(𝐴 ∪ {1, 𝑎, 𝑑}) + 𝑤(𝐴 ∪ {1, 𝑏, 𝑐}).

Then applying Lemma 73 to 𝑌 and 𝑍 yields

𝑌 < max {𝑋, 𝑍} , 𝑍 < max {𝑋,𝑌 } .

But this means that 𝑌 < 𝑋 and 𝑍 < 𝑋 . We now argue that in fact 𝑋 < 𝑍 or 𝑋 < 𝑌 ,

which leads to a contradiction. Consider the multigraph that contains both matchings

that define 𝑋 , that is, 𝐴 ∪ {2, 𝑎, 𝑏} and 𝐴 ∪ {1, 𝑐, 𝑑}. Since every element in 𝐴 has degree 2,

no path in the multigraph terminates in 𝐴. The multigraph must therefore contain three

disjoint alternating paths from {2, 𝑎, 𝑏} to {1, 𝑐, 𝑑}. Observe that there is no path from 1

to 2 because otherwise we could swap along that path in the two matchings and get the
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same total weight, yielding a contradiction because

𝑋 = 𝑤(𝐴 ∪ {1, 𝑎, 𝑏}) + 𝑤(𝐴 ∪ {2, 𝑐, 𝑑}) < 𝑤(𝐴 ∪ {2, 𝑎, 𝑏}) + 𝑤(𝐴 ∪ {1, 𝑐, 𝑑}) = 𝑋.

Instead, the path starting from 2 must terminate at 𝑐 or 𝑑, and likewise the path starting

from 1 must terminate at 𝑎 or 𝑏. Suppose there is an alternating path from 2 to 𝑐 and from

1 to 𝑎, then we may swap along it without modifying the total weight, so

𝑋 = 𝑤(𝐴 ∪ {𝑐, 1, 𝑏}) + 𝑤(𝐴 ∪ {𝑎, 2, 𝑑}) < 𝑤(𝐴 ∪ {1, 𝑏, 𝑐}) + 𝑤(𝐴 ∪ {1, 𝑎, 𝑑}) = 𝑍.

One can verify that every other possible combination of alternating paths yields either

𝑋 < 𝑍 or 𝑋 < 𝑌 , which contradicts that both 𝑌 < 𝑋 and 𝑍 < 𝑋 hold. □

We are now ready to prove Theorem 53.

Theorem 53. For any 𝑞 ≥ 3, there exists 𝑛 = 𝑂 (𝑞), a Kuhn choice function C over 𝑋 = [𝑛], and

a family H of non-Kuhn 𝑞-quota-filling path-independent choice functions over 𝑋 such that an

oracle must query C on 2Ω(𝑞) subsets of 𝑋 in order to distinguish C from H .

Proof. Let 𝑞 ≥ 3 and 𝑛 ≥ 𝑞+3 be arbitrary. Note that C𝐴 is 𝑞-quota-filling, path-independent,

and not Kuhn for any choice of 𝐴 ⊆ [7..𝑛] with |𝐴| = 𝑞 − 3. Furthermore, observe

that if 𝐴 and 𝐴′ both satisfy these conditions then F (𝐴) ∩ F (𝐴′) = ∅ if 𝐴 ≠ 𝐴′. Define

H = {C>} ∪ {C𝐴 : 𝐴 ⊆ [7..𝑛], |𝐴| = 𝑞 − 3}. For the oracle to discard some C𝐴 from H , it

must query one of F (𝐴), as C𝐴 acts exactly like C> on all other sets. In other words, the

oracle must query a set 𝑆 where 𝑆 ∩ [7..𝑛] = 𝐴 in order to discard C𝐴. Therefore the oracle

must make at least |{𝐴 ⊆ [7..𝑛] : |𝐴| = 𝑞 − 3}| =
(𝑛−6
𝑞−3

)
queries in order to rule out every C𝐴

from H . Choosing 𝑛 = 2𝑞 completes the proof. □

Proof of Theorem 56: For the remainder of this section, let 𝑞 = 2 and let 𝑛 be arbitrary.

Denote the seats [𝑞] by 𝐴 = {𝑎, 𝑏} for brevity. We first state two auxiliary lemmas.
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Lemma 75 (Local 0-edge lemma). For 𝑞 = 2 and all 𝑠 ∈ [𝑞], there exists 𝑖 ∈ [𝑛] such that for

all 𝑆 ⊆ [𝑛] with |𝑆 | ≥ 𝑞, the edge (𝑠, 𝑖) is not present in the maximum-weight matching for C(𝑆).

Proof. Note that if |𝑆 | > 2, then that maximum-weight matching is also the same one as

for 𝑆′ = C(𝑆), so it suffices to show the claim for |𝑆 | = 2. Suppose for a contradiction

that this were false. Then take without loss of generality 𝑎 ∈ [𝑞] to be the seat it fails for,

and suppose that for all 𝑖 ∈ [𝑛], (𝑎, 𝑖) were in the maximum-weight matching for at least

one 𝑆 ⊆ [𝑛]. Consider one such matching that contains (𝑎, 𝑖), and note that there is some

𝑗 ∈ [𝑛] \ {𝑖} such that (𝑏, 𝑗) is also in that matching. This by definition implies that

𝑤(𝑎, 𝑖) + 𝑤(𝑏, 𝑗) > 𝑤(𝑎, 𝑗) + 𝑤(𝑏, 𝑖).

Define the mapping 𝑝 : 𝑖 ↦→ 𝑗 , which is well-defined for all 𝑖 ∈ [𝑛] (one can arbitrarily

pick 𝑗 if there are multiple choices). Observe that there must therefore be some ℓ ∈ [𝑛]

and 𝑚 ≥ 1 such that 𝑝𝑚 (ℓ) = ℓ. That is, 𝑝 must contain a cycle. Now write 𝑝0(𝑖) = 𝑖 and

this gives

𝑚∑︁
𝑘=1

(
𝑤(𝑎, 𝑝𝑘−1(ℓ)) + 𝑤(𝑏, 𝑝𝑘 (ℓ))

)
>

𝑚∑︁
𝑘=1

(
𝑤(𝑎, 𝑝𝑘 (ℓ)) + 𝑤(𝑏, 𝑝𝑘−1(ℓ))

)
= 𝑤(𝑎, 𝑝𝑚 (ℓ)) +

𝑚∑︁
𝑘=2

𝑤(𝑎, 𝑝𝑘−1(ℓ)) + 𝑤(𝑏, 𝑝0(ℓ)) +
𝑚−1∑︁
𝑘=1

𝑤(𝑏, 𝑝𝑘 (ℓ))

= 𝑤(𝑎, 𝑝0(ℓ)) +
𝑚∑︁
𝑘=2

𝑤(𝑎, 𝑝𝑘−1(ℓ)) + 𝑤(𝑏, 𝑝𝑚 (ℓ)) +
𝑚−1∑︁
𝑘=1

𝑤(𝑏, 𝑝𝑘 (ℓ))

=

𝑚∑︁
𝑘=1

(
𝑤(𝑎, 𝑝𝑘−1(ℓ)) + 𝑤(𝑏, 𝑝𝑘 (ℓ))

)
.

Which is a contradiction. □

Lemma 76 (Global 0-edge lemma). For 𝑞 = 2, there exists (𝑠, 𝑖) ∈ [𝑞] × [𝑛] such that for all

𝑆 ⊆ [𝑛], the edge (𝑠, 𝑖) is not in the maximum-weight matching for C(𝑆).
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Proof. Let (𝑎, 𝑖𝑎) and (𝑏, 𝑖𝑏) be the two edges that never appear in a maximum-weight

matching for any 𝑆 with |𝑆 | ≥ 𝑞 as in Lemma 75, for 𝑎, 𝑏 ∈ [𝑞] respectively. It suffices to

show that one of (𝑎, 𝑖𝑎) or (𝑏, 𝑖𝑏) is never present in the maximum-weight matching for

any sets 𝑆 ⊆ 𝑋 with |𝑆 | = 1. But the only cases where (𝑎, 𝑖𝑎) or (𝑏, 𝑖𝑏) may appear are

exactly when 𝑆 = {𝑖𝑎} or 𝑆 = {𝑖𝑏}.

Suppose for a contradiction that neither (𝑎, 𝑖𝑎) nor (𝑏, 𝑖𝑏) satisfy the conditions of the

premise. Then for 𝑆 = {𝑖𝑎}, the maximum-weight matching must be the edge (𝑎, 𝑖𝑎) so that

𝑤(𝑎, 𝑖𝑎) > 𝑤(𝑏, 𝑖𝑎), and likewise for 𝑆 = {𝑖𝑏} it must be (𝑏, 𝑖𝑏) so 𝑤(𝑏, 𝑖𝑏) > 𝑤(𝑏, 𝑖𝑏). This

implies 𝑤(𝑎, 𝑖𝑎) + 𝑤(𝑏, 𝑖𝑏) > 𝑤(𝑎, 𝑖𝑏) + 𝑤(𝑏, 𝑖𝑎) so when 𝑆 = {𝑖𝑎, 𝑖𝑏}, the maximum-weight

matching must contain both (𝑎, 𝑖𝑎) and (𝑏, 𝑖𝑏), but now this contradicts the claim that

these edges never appear in such an 𝑆 as per Lemma 75, which completes the proof. □

Using these two lemmas, we are can prove Theorem 56.

Theorem 56. Under the valuation-oracle model, given a 𝑞-quota-filling choice function C with

𝑞 = 2, one can efficiently verify whether C is Kuhn or not and if it is, find weights that rationalize

it.

Proof. Fix 𝑞 = 2 and 𝑛 ≥ 2 and suppose we are given a Kuhn choice function C via its

valuation function 𝑤C for all 𝑆 ⊆ [𝑛].

We describe an algorithm. First, guess an edge that satisfies Lemma 76, let this with-

out loss of generality be (𝑎, 1). We then guess an edge that satisfies Lemma 75 for the

remaining seat, let this now be (𝑏, 2) without loss of generality.

Now observe that if these choices of global and local 0-edges are correct, then 𝑤(𝑏, 1) =

𝑤C ({1}) because we know that the matching consists of the edge (𝑏, 1). Similarly, when

𝑆 = {1, 𝑖} for 𝑖 ∈ [2..𝑛], the matching must consist of (𝑎, 𝑖) and (𝑏, 1), so 𝑤(𝑎, 𝑖) = 𝑤C ({1, 𝑖})−

𝑤(𝑏, 1). Similar reasoning allows us to deduce that for 𝑖 = [3..𝑛], 𝑤(𝑏, 𝑖) = 𝑤C ({2, 𝑖}) −

𝑤(𝑎, 2).

Assuming our choices of the 0-edges were correct, we have now recovered all weights
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except for 𝑤(𝑎, 1) and 𝑤(𝑏, 2). But it is not hard to see that we can without loss of gener-

ality set 𝑤(𝑎, 1) = 0 and 𝑤(𝑏, 2) = 0, since the first edge is never chosen and the second

edge may be chosen only in the singleton 𝑆 = {2}.

If the guesses for the 0-edges were correct, one can now verify in polynomial time for

all 𝑆 ⊆ 𝑋 with |𝑆 | = 2 that the found weights rationalizes C.

But note that the number of possible guesses for the two 0-edges is 𝑛2, and the ver-

ification procedure given a guess runs in polynomial time, so one can enumerate every

possibility for the 0-edges and check whether the found weights rationalize C in time

polynomial in 𝑛. □

3.4.4 Proofs for the approximation hierarchy

In this section, we present the missing proofs on approximability.

Lemma 77 (1/𝑞-approximability of Q𝑛
𝑞 with R𝑛

𝑞). Let C ∈ Q𝑛
𝑞 be arbitrary, then there exists

some C′ ∈ R𝑛
𝑞 such that C′ 1/𝑞-approximates C.

Proof. Construct sets𝐶𝑖 as follows; let𝐶1 = C(𝑋), and𝐶𝑖 = C(𝑋\∪𝑖−1
𝑗=1𝐶 𝑗 ) for 𝑖 = 2, . . . , ⌈𝑛/𝑞⌉.

Let ≻ be any total order on 𝑋 such that 𝑥 ≻ 𝑦 if 𝑥 ∈ 𝐶𝑖, 𝑦 ∈ 𝐶 𝑗 and 𝑖 < 𝑗 . Let C′ be the

𝑞-responsive choice function constructed from ≻.

We argue that C′ 1/𝑞-approximates C. To see this, let 𝑆 ⊆ 𝑋 be arbitrary. Set also

ℓ = min {𝑖 : 𝑆 ∩ 𝐶𝑖 ≠ ∅}. Then since ℓ is minimal, C′ prefers students in 𝐶ℓ over any other

student in 𝑆 \ 𝐶ℓ, so we must have 𝑆 ∩ 𝐶ℓ ⊆ C′(𝑆), and in particular 𝑆 ∩ 𝐶ℓ = C′(𝑆) ∩ 𝐶ℓ.

Further, by construction, 𝑆 ⊆ ∪⌈𝑛/𝑞⌉
𝑗=ℓ

𝐶 𝑗 , but C(∪⌈𝑛/𝑞⌉
𝑗=ℓ

𝐶 𝑗 ) = 𝐶ℓ and so by substitutability,

𝑆 ∩ 𝐶ℓ = 𝑆 ∩ C(∪⌈𝑛/𝑞⌉
𝑗=ℓ

𝐶 𝑗 ) ⊆ C(𝑆). We have shown C′(𝑆) ∩ 𝐶ℓ = 𝑆 ∩ 𝐶ℓ ⊆ C(𝑆), but ℓ was

chosen so that this intersection is non-empty, which proves the claim. □

Lemma 78 (2/𝑞-inapproximability of L𝑛
𝑞 with R𝑛

𝑞). Given 𝑞 ≥ 3, there exists 𝑛 = 𝑂 (𝑞2), and

C ∈ L𝑛
𝑞 such that for all C′ ∈ R𝑛

𝑞, C′ does not 2/𝑞-approximate C.

108



Proof. Fix 𝑞 ≥ 3, and construct a Kuhn choice function C with 𝑞 schools and 𝑛 = 𝑞2

students as follows. Let seat 𝑖 = 1, . . . , 𝑞 prefer students 𝑖, 𝑞 + 𝑖, 2𝑞 + 𝑖, . . . , (𝑞 − 1)𝑞 + 𝑖 in

that order, and find others unacceptable.

Suppose there were some C′ ∈ R𝑛
𝑞 such that it 2/𝑞-approximated C and let ≻ be its

preference list. For each school 𝑖 = 1, . . . , 𝑞, let 𝑚𝑖 be the student that ≻ ranks last, and

let 𝑀 =
{
𝑚1, . . . , 𝑚𝑞

}
. Now let 𝑗 = min𝑖 {𝑚𝑖} and let 𝑇 = {𝑞 + 𝑗 , 2𝑞 + 𝑗 , . . . , (𝑞 − 1)𝑞 + 𝑗}

and 𝑆 = 𝑇 ∪ 𝑀 . Observe that 𝑀 ∩ 𝑇 = {𝑚𝑖} since otherwise 𝑖 is not minimal, so |𝑆 | =

2𝑞 − 1. Further, note that for all 𝑥1 ∈ 𝑇 and 𝑥2 ∈ 𝑀 , 𝑥1 ≻ 𝑥2 by the definition of 𝑀 and

𝑇 . In particular, this implies C′(𝑆) = 𝑇 , but C(𝑆) = 𝑀 , which completes the proof since

|𝑀 ∩ 𝑇 | = 1. □

Lemma 79 (2/𝑞-inapproximability of Q𝑛
𝑞 with K𝑛

𝑞 ). There exists 𝑛, 𝑞 ∈ N and C ∈ Q𝑛
𝑞 such

that for all C′ ∈ K𝑛
𝑞 , C′ does not 2/𝑞-approximate C.

Proof. In Definition 82 of Section 3.5, we discuss the Devil’s choice function, which is a

non-Kuhn choice function with 𝑛 = 6, 𝑞 = 2. The result follows since C ∉ K𝑛
𝑞 . □

Lemma 80. For 𝑛 = 𝑂 (𝑞), there exists C ∈ R𝑛
𝑞 whose 1/𝑞-approximation neighborhood is of size

2
Ω

(
2𝑞−1√
𝑞−1

)
in Q𝑛

𝑞 .

Proof. Fix 𝑞 and let 𝑛 = 2𝑞. In Section 3.4.1 we construct 2
Ω

(
2𝑞−1√
𝑞−1

)
quota-filling and path-

independent choice functions on [𝑛]. Call this family H . In the construction, we divide

[𝑛] into two sets of size 𝑞: 𝑋 and 𝑋′, and let ≻ be any strict preference list over 𝑋 ∪ 𝑋′

such that for 𝑥 ∈ 𝑋, 𝑥′ ∈ 𝑋′ we have 𝑥 ≻ 𝑥′. We now argue that each C′ ∈ H is in the 1/𝑞-

approximation neighborhood of C≻. Fix C′ ∈ H . We need to show that for any 𝑆 ⊆ 𝑋 ∪ 𝑋′

with |𝑆 | ≥ 𝑞 + 1,

|C′(𝑆) ∩ C≻ (𝑆) | ≥ 1.

Observe that |𝑆 ∩ 𝑋 | ≤ |𝑋 | = 𝑞, so 𝑆∩ 𝑋′ ≠ ∅. Because both C≻ and C′ (by construction as a
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(≻, 𝑞)-completion) follow the order ≻ on 𝑋′, both must also pick the maximal element in

𝑆 ∩ 𝑋′ according to ≻, so max≻ (𝑆 ∩ 𝑋′, 1) ∈ C′(𝑆) ∩ C≻ (𝑆), which completes the proof. □

3.5 Computational results

We now discuss various computational aspects of using quota-filling choice functions

in stable matching.

Notation: When it is clear from context, we concatenate sets and write them without

curly braces, for instance writing C(123) = 12 for C({1, 2, 3}) = {1, 2}.

Recognizing Kuhn choice functions: We first describe how to decide whether a given

set of inputs and outputs of a choice function can be extended to a Kuhn choice function.

This takes the form of the following theorem.

Theorem 81 (MIP for Kuhn recognition). Let C be a 𝑞-quota-filling choice function over 𝑋 =

[𝑛]. Suppose that we are given C(𝑆) for all 𝑆 ∈ S where S ⊆ 2𝑋 (and all 𝑆 ∈ S satisfy |𝑆 | ≥ 𝑞).

Then the following mixed-integer program will have an optimal solution with objective value 𝜀 = 1

if and only if there exists a Kuhn choice function that coincides exactly with the given values of C

on S.

max 𝜀

s.t. 𝑊 (𝑆, 𝜎) =
∑︁
𝑖∈[𝑞]

𝑤 (𝑖, 𝜎(𝑖)) ∀ 𝑆 ∈ S, ∀𝜎 ∈ Π( [𝑞], 𝑆),

𝑀 (𝑆) = max
𝜎∈Π( [𝑞],C(𝑆))

𝑣(𝑆, 𝜎) ∀ 𝑆 ∈ S,

𝑀 (𝑆) ≥ 𝜀 +𝑊 (𝑆, 𝜎) ∀ 𝑆 ∈ S, ∀𝜎 ∈ Π( [𝑞], 𝑆) \ Π( [𝑞], C(𝑆)),

𝑤(𝑖, 𝑗) ≥ 1 ∀ 𝑖 ∈ [𝑞],∀ 𝑗 ∈ [𝑛],

0 ≤ 𝜀 ≤ 1.
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Here we denote by Π(𝑈,𝑉) the set of all injections 𝜎 : 𝑈 → 𝑉 . In particular Π( [𝑞], C(𝑆)) is the

set of permutations of C(𝑆) across the 𝑞 positions.

Furthermore, if such a solution exists, the values of the decision variables 𝑤(𝑖, 𝑗) with (𝑖, 𝑗) ∈

[𝑞] × [𝑛] are weights that rationalize this Kuhn choice function.

Proof. Suppose the MIP has a solution with 𝜀 = 1. By its definition, 𝑊 (𝑆, 𝜎) is the weight

of the matching that matches the students 𝑆 to seats [𝑞] according to 𝜎. 𝑀 (𝑆) is then

the maximum-weight matching in [𝑞] ∪ C(𝑆). Note that this constraint is where the non-

linearity appears (making this formulation a MIP). We require that every matching that

does not assign students in the right way (that is, 𝜎(𝑆) ≠ C(𝑆)) has a strictly lower weight,

in particular it has at least a unit gap. The weights further satisfy 𝑤(𝑖, 𝑗) > 0. Finally note

that the formulation does not necessitate that sets 𝑆′ ∉ S have unique maximizers. How-

ever, since the maximizers are unique on the prescribed sets S, one can simply perturb

the weights by some small amount and the maximizers on the prescribed sets remain,

and all other maximizers also become unique. Therefore the produced weights certainly

rationalize a Kuhn choice function that coincides with C on S.

Suppose now that C were Kuhn and there existed some weights 𝑤(𝑖, 𝑗) > 0 that ratio-

nalize it, we must show the MIP has a solution. Define

𝛿 = min

 min
𝑆∈2𝑋 ,

𝜎,𝜎′∈Π( [𝑞],𝑆)\Π( [𝑞],C(𝑆))


������∑︁𝑖∈[𝑞] 𝑤(𝑖, 𝜎(𝑖)) − 𝑤(𝑖, 𝜎′(𝑖))

������
 , min

(𝑖, 𝑗)∈[𝑞]×[𝑛]
{𝑤(𝑖, 𝑗)}

 .
If we multiply all weights by 𝛿−1, then clearly 𝑤(𝑖, 𝑗) ≥ 1 for all 𝑖, 𝑗 , and each maximizer

is separated by at least 1. These weights 𝛿−1𝑤(𝑖, 𝑗) therefore satisfy the MIP with 𝜀 = 1, as

required. □

We note that this formulation is presented for exposition but is not ideal in real-world

use. It contains many redundant inequalities and can be further tightened when used in

practice. For instance for 𝑇 ⊂ 𝑆, one can add the constraint 𝑀 (𝑆) ≥ 𝑀 (𝑇) + 𝜀. That said,
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modern MIP solvers will already remove many of the redundancies in the presolve stage.

The lattice representation: Consider a 𝑞-quota-filling path-independent choice function

C on some ground set 𝑋 . One convenient way to visualize C is the lattice representation of

a choice function. Such a representation is constructed by observing that for each 𝑇 ⊆ 𝑋

with |𝑇 | = 𝑞, C−1(𝑇) has a unique inclusion-wise maximal set, say 𝑆, such that C(𝑆) = 𝑇

(this is a straightforward corollary of path-independence). Further, C(𝑆 \ {𝑥}) = 𝑇 for all

𝑥 ∉ C(𝑆), and for each of the 𝑞 elements 𝑦 ∈ C(𝑆), C(𝑆 \ {𝑦}) yields a different choice, so 𝑆

has exactly 𝑞 descendant nodes. One can show that this in fact gives rise to a distributive

lattice [126] (when one adds sets 𝑇 ⊆ 𝑋 with |𝑇 | < 𝑞). Figure 3.1 shows an example of two

quota-filling and path-independent (but non-Kuhn) choice functions through their lattice

representation.

We now discuss the two smallest examples of non-Kuhn choice functions. We call

these the Devil’s choice function and the Devil’s cousin.

Definition 82 (Devil and Devil’s cousin). Let 𝑛 = 6 and 𝑞 = 2, and define the Devil’s choice

function and the Devil’s cousin as per the lattice representations in Figure 3.1. In particular, the

Devil is identical to the responsive choice function choosing the least elements except for the choices

C(13456) = 14, C(256) = 26, and C(156) = 16. Likewise the Devil’s cousin is identical to the

responsive choice function except for the choices C(13456) = 14, C(456) = 46, and C(156) = 16.

Lemma 83. For 𝑛 = 6 and 𝑞 = 2, the only non-Kuhn choice functions are the Devil’s choice

function and the Devil’s cousin.

This lemma can be shown computationally. There does not appear to be a trivial proof

that these two choice functions are non-Kuhn, instead, the proofs are tedious and follow

along the same lines as that of Lemma 74.

Counting Kuhn choice functions: For small 𝑞 and 𝑛, one can compute exactly the num-

ber of path-independent and Kuhn choice functions. Table 3.1 show these counts for
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𝑞 = 2, 3, 4, respectively, for small values of 𝑛. Here we consider choice functions equal if

there exists some permutation 𝜎 : [𝑛] → [𝑛] such that C(𝑆) = C′(𝜎(𝑆)) for all 𝑆 ⊆ [𝑛].

That is, if the choice functions are equal after some relabeling of the ground set 𝑋 . The

MIP in Theorem 81 was used along with an exhaustive search to compute these tables.

This method breaks down for larger values of 𝑛. The combinatorial structure in the MIP

grows increasingly complex, in particular choosing the right assignment that arises in the

maximum constraint. Further, simply deduplicating the choice functions becomes com-

putationally infeasible for large 𝑛.

12
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(23456)
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24
(2456)

34
(3456)
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(1356)
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(a) Devil’s choice function
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36
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15
(15)

(b) Devil’s cousin

Figure 3.1: Lattice representations of the Devil’s choice function and Devil’s cousin. Nodes where the choice
function deviates from the responsive choice function are shaded. Each node represents an (inclusion-wise
maximal) 𝑆 ⊆ 𝑋 such that C(𝑆) = 𝑇 , where 𝑇 is on the first line and 𝑆 on the second (inside braces). Observe
in particular that each edge represents adding (or removing) an element to (from) 𝑆. In this particular case
the lattice representations are very regular (and indeed have identical structure), but we note that this is not
the case in general.

3.6 Conclusion

In this chapter we have investigated various aspects of quota-filling, path-independent

choice functions. We have argued that this general class is too large to be used in the of-

fline model for stable matching, and then proposed Kuhn choice functions as a practical

yet powerful subclass. We have shown that while Kuhn choice functions are hard to rec-

ognize if not specified directly via weights, they have many desirable properties such as
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𝑞 = 2 𝑞 = 3 𝑞 = 4
𝑛 All Non-Kuhn All Non-Kuhn All Non-Kuhn

2 1 0 – – – –
3 1 0 1 0 – –
4 2 0 1 0 1 0
5 6 0 2 0 1 0
6 40 2 24 1 3 0
7 560 116 2954 1037 119 21

Table 3.1: Number of path-independent quota-filling choice functions that are Kuhn and non-Kuhn for
small values of 𝑛 and 𝑞.

being efficiently representable and having high interpretability, making them ideal for use

in the offline model. We have additionally studied the hierarchy of choice functions and

shown that Kuhn choice functions are capable of representing a much larger class of pref-

erence systems than strict preference lists. These results support the use of Kuhn choice

functions in markets such as New York City school choice, which would give schools

richer ability to describe their preferences and to assemble classes of diverse students.
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Epilogue

In this thesis, we have presented three strands of research exploring tradeoffs

between information, tractability, and fairness within large matching markets. In Chap-

ter 1 we studied the Serial Dictatorship under random markets where student preferences

were limited in length, and showed that under our hypotheses students in large balanced

markets prefer longer lists. In Chapter 2 we studied the impact of the presence of bias on

admissions to the New York City Specialized High Schools, and showed that while disad-

vantaged students experience outsized mistreatment due to bias, it can be effectively miti-

gated (as measured by two forms of aggregate mistreatment) by targeting the average-top

performing students with additional resources. Finally in Chapter 3 we proposed Kuhn

choice functions as a practical alternative to strict preference lists in the context of school

choice, arguing for their good fit and versatility under the offline model, and placing them

within the hierarchy of quota-filling path-independent choice functions.

115



References

[1] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[2] D. M. Herszenhorn, “Revised admission for high schools,” The New York Times,
Oct. 2003.
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[20] A. Abdulkadiroğlu and T. Sönmez, “Random serial dictatorship and the core from
random endowments in house allocation problems,” Econometrica, vol. 66, no. 3,
pp. 689–701, 1998.
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Appendix A: Additional Details for Chapter 1

A.1 Background on Differential Equations and Stochastic Processes

This appendix contains some preliminaries that are required to follow the proofs in

the main text, in particular on the theory of ordinary differential equations (ODEs) and

initival value problems (IVPs), as well as probability and Markov theory.

Ordinary Differential Equations

An ordinary differential equation is a description of the local dynamics of a system in

terms of its current state and derivatives; in particular, a first order ordinary differential

equation describes the rate of change of a quantity 𝑥 as a function of the current time 𝑡

and the current state 𝑥(𝑡). That is, 𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(𝑡)) for some 𝑓 . A problem with such a

description along with boundary data (e.g., 𝑥(𝑡0) = 𝑥0) is called an initial value problem. A

main theme in differential equations is to understand when such local descriptions give

rise to solutions on a large domain, such as globally. Lipschitz continuity is an important

property in differential equations, as it is a sufficient condition for the existence of such

solutions in a neighborhood of where it holds as we will argue next.

Definition 84 (Lipschitz continuity). A function 𝑓 : R𝑚 → R𝑛 is Lipschitz continuous under

norm ∥·∥ on𝑈 ⊆ R𝑚 if there exists some 𝐿 ≥ 0 such that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 𝐿 ∥𝑥 − 𝑦∥ ,

for all 𝑥, 𝑦 ∈ 𝑈. We call 𝐿 the Lipschitz constant of 𝑓 on𝑈.

The standard result for the existence and uniqueness of solutions to initial value prob-
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lems of ordinary differential equations comes from variations of the Picard-Lindelöf The-

orem, which roughly state that if 𝑓 is Lipschitz at a point, a solution exists and is unique

in some neighborhood of that point. The following is a version that extends this fact

to the positive reals for the one dimensional case, adapted from [127, Theorem 2.2 and

Corollary 2.6].

Theorem 85. Consider the initial value problem

𝑥′ = 𝑓 (𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0, (A.1)

where (𝑡0, 𝑥0) ∈ 𝑈 for some open set 𝑈 ⊆ R2 and 𝑓 : 𝑈 → R is a Lipschitz continuous function.

Then if [𝑡0,∞) × R ∈ 𝑈 there exists a unique solution 𝑥(𝑡) to (A.1) for all 𝑡 ≥ 𝑡0.

Probability and Markov theory

In this section we briefly cover some fundamentals of general probability and Markov

theory. The treatment is not fully formal as we omit certain regularity conditions and

assumptions—however such conditions are immediately satisfied by the objects we study

in this chapter. We refer the reader to [128] for a more thorough discussion of these topics.

Recall that a random variable 𝑋 on a probability triple (Ω, F , P) is a measurable real-

valued function from (Ω, F ) to (R,L).

Definition 86 (Stochastic process). A stochastic process on a state space S ⊆ R is a set of

random variables {𝑋𝑡}𝑡∈T on the same probability triple that are indexed by some T (thought of as

time) and each takes values in S (that is, 𝑋𝑡 ∈ S for all 𝑡 ∈ T ).

Common cases are T = {0, 1, 2, 3, . . . } or T = {0,Δ, 2Δ, 3Δ, . . . } for some Δ > 0 for

discrete time processes and T = [0,∞) for continuous time processes.

Convergence. Consider a sequence {𝑋𝑛}𝑛=1,2,... of random variables on the same prob-

ability triple (Ω, F , P). We recall some ways in which 𝑋𝑛 may converge to some other
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random variable 𝑋 .

Definition 87 (Convergence in Probability). The sequence of random variables {𝑋𝑛}𝑛=1,2,...

converges to the random variable 𝑋 in probability, denoted 𝑋𝑛
P→ 𝑋 if for all 𝜀 > 0, as 𝑛→ ∞

lim
𝑛→∞

P ( |𝑋𝑛 − 𝑋 | ≥ 𝜀) → 0.

A stochastic process can converge pointwise (for all 𝑡 ∈ T ) in probability, but clearly

a stronger condition is that of uniform convergence, where this convergence is uniform

through T .

Definition 88 (Uniform convergence in probability). The sequence of stochastic processes{
𝑋𝑛𝑡

}
𝑡∈T ,𝑛=1,2,... on T converges uniformly in probability to {𝑋𝑡}𝑡∈T if for all 𝜀 > 0, as 𝑛→ ∞,

P
(
sup
𝑡∈T

��𝑋𝑛𝑡 − 𝑋𝑡 �� ≥ 𝜀) → 0.

That is, the maximum deviation over the index set between the 𝑋𝑛𝑡 and 𝑋𝑡 is itself

bounded and vanishes in probability.

Definition 89 (Convergence in 𝑟-mean). The sequence of random variables {𝑋𝑛}𝑛=1,2,... con-

verges to a random variable 𝑋 in 𝑟-mean, denoted 𝑋𝑛
𝐿𝑟→ 𝑋 if for all 𝜀 > 0, lim𝑛→∞ E ( |𝑋𝑛 − 𝑋 |𝑟) →

0, as 𝑛→ ∞.

Note in particular that for 𝑟 = 1, this is convergence in mean, that is, E (𝑋𝑛) → E (𝑋).

Convergence in probability does not automatically imply convergence in 𝑟-mean, though

the converse is true. One special case where the converse holds is when 𝑋𝑛 and 𝑋 are

bounded.

Lemma 90. Suppose 𝑋𝑛
P→ 𝑋 and |𝑋 | ≤ 𝑀 and |𝑋𝑛 | ≤ 𝑀 for some 𝑀 ≥ 0. Then 𝑋𝑛

𝐿𝑟→ 𝑋 for

all 𝑟 ≥ 1.
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Markov processes. A Markov process is a stochastic process which additionally satisfies

a property of being memoryless, meaning that its future evolution is entirely dictated by its

current state independent of the past. We restrict ourselves to time-homogeneous Markov

chains with finite state spaces.

Definition 91 (Discrete time Markov chain). A discrete time Markov chain is a stochastic

process on a finite state space S ⊆ R and index set T = {0, 1, 2, 3, . . . } that satisfies the property

P (𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖𝑡 , 𝑋𝑡−1 = 𝑖𝑡−1, . . . , 𝑋1 = 𝑖1) = P (𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖𝑡) ,

for all states 𝑗 , 𝑖· ∈ S and all 𝑡 ∈ T . The evolution of such a Markov chain is therefore determined

by its (one step) transition probabilities 𝑝(𝑖, 𝑗) for 𝑖, 𝑗 ∈ S, arranged in a transition matrix 𝑃

defined by

𝑝(𝑖, 𝑗) = P (𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖) .

Definition 92 (Continuous time Markov chain). A continuous time Markov chain is a

stochastic process on a finite state space S ⊆ R and index set T = [0,∞) that satisfies the property

P
(
𝑋𝑡+𝑠 = 𝑗 | 𝑋𝑡 = 𝑖, 𝑋𝑡𝑙 = 𝑖𝑙 , 𝑋𝑡𝑙−1 = 𝑖𝑙−1, . . . , 𝑋0 = 𝑖0

)
= P (𝑋𝑠 = 𝑗 | 𝑋0 = 𝑖) , (A.2)

for all 𝑠 ≥ 0, 𝑡 > 𝑡𝑙 > 𝑡𝑙−1 > · · · > 𝑡1 > 𝑡0 ≥ 0 and all 𝑗 , 𝑖, 𝑖· ∈ S.

Note that (A.2) implies that the transition times must also be random and memoryless.

It turns out that this property embodies continuous time Markov chains with a large

amount of structure. In particular, the time between transitions (when the chain moves

from one state to another) must be exponentially distributed (this is the only memoryless

continuous distribution, satisfying P (𝑋 ≤ 𝑥 | 𝑋 ≥ 𝑦) = P (𝑋 ≤ 𝑥 − 𝑦)).

In the discrete case the evolution was defined by the one step transition probabilities

𝑃. In the continuous case, these are replaced by a Matrix-valued function of time 𝑃(𝑡). It
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turns out there is a compact way to represent the possible transitions via transition rates

𝑞(𝑖, 𝑗) that describe the instantaneous rate of moving from state 𝑖 to state 𝑗 as formalized

by the following lemma.

Theorem 93 (Transition rates). For a continuous time Markov chain on a finite state space, let

𝑝(𝑖, 𝑗 ; 𝑡) = P (𝑋𝑡 = 𝑗 | 𝑋0 = 𝑖) for 𝑡 ≥ 0. Denote by 𝑃(𝑡) the matrix with entries 𝑝(𝑖, 𝑗 ; 𝑡). Then

there exists a transition rate matrix 𝑄 with entries 𝑞(𝑖, 𝑗) that is the unique solution to

𝑄 = lim
𝑡→0

𝑃(𝑡) − 𝐼
𝑡

,

note that 𝑞(𝑖, 𝑖) = −∑
𝑗≠𝑖 𝑞(𝑖, 𝑗).

We next introduce the concept of a Poisson point process in order to build continuous

time Markov chains from discrete time ones. Intuitively, a homogeneous Poisson point

process simply counts the number of events that have happened until time 𝑡, where the

time between successive events is iid and exponentially distributed.

Definition 94 (Homogeneous Poisson point process). Let 𝜆 > 0. Define the stochastic process

{𝐻𝑡}𝑡≥0 with state space {0, 1, 2, . . . } as follows. For 𝑖 = 1, 2, . . . let 𝐸𝑖 ∼Exp(𝜆) (an exponen-

tially distributed random variable with rate 𝜆), and let 𝐻𝑡 = sup𝑖=0,1,2,...

{∑𝑖
𝑗=1 𝐸 𝑗 ≤ 𝑡

}
. We call

{𝐻𝑡}𝑡≥0 the homogeneous Poisson process with rate 𝜆 on 𝑡 ≥ 0. Note that 𝐻𝑡 ∼Pois(𝜆𝑡) (a Poisson

distributed random variable with mean 𝜆𝑡), and in particular E (𝐻𝑡) = 𝜆𝑡 for all 𝑡 ≥ 0.

A Homogeneous Poisson point process is an example of a very simple Markov chain.

Lemma 95. A homogeneous Poisson point process with rate 𝜆 is a continuous time Markov chain

on the countable state space S = {0, 1, 2, . . . } with transition rates

𝑞(𝑖, 𝑗) =


𝜆, 𝑗 = 𝑖 + 1,

−𝜆, 𝑗 = 𝑖,

0, otherwise.
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Given a continuous time Markov chain, one can decompose it into a discrete time

Markov chain that describes the transition probabilities at jump times, and a per-state

rate of an Exponential distribution that describes the duration that the chain stays in that

state before jumping to the next.

The following theorem gives one variation of a theorem that allows easily constructing

continuous time Markov chains from discrete time Markov chains.

Theorem 96 (Constant-rate Markov Chain Embedding). Let {𝑋𝑛}𝑛=0,1,2,... be a discrete time

Markov chain on finite state space S with 𝑋0 = 𝑠0 for some initial state 𝑠0 ∈ S. Let 𝜆 > 0 be some

rate and let {𝐻𝑡}𝑡≥0 be the homogeneous Poisson point process with rate 𝜆 on [0,∞).

Define a stochastic process {𝑍𝑡}𝑡≥0 by 𝑍𝑡 = 𝑋𝐻𝑡
. Then {𝑍𝑡}𝑡≥0 is a continuous time Markov

chain whose state space is S, initial state is 𝑠0, and that has rates 𝑞(𝑖, 𝑗) = 𝜆𝑝(𝑖, 𝑗) for 𝑖 ≠

𝑗 and 𝑞(𝑖, 𝑖) = −𝜆(1 − 𝑝(𝑖, 𝑖)). This continuous time Markov chain is called an embedded

chain because its transition rates follow the transition probabilities of the discrete chain, that is,

P (𝑍𝑠 = 𝑗 | 𝑍𝑡 = 𝑖) = 𝑝(𝑖, 𝑗) if 𝐻𝑡 = 𝐻𝑠 + 1.

Martingales. A martingale is a stochastic process with the property that its expected

value in the future is the current value.

Definition 97 (Martingale). A stochastic process {𝑋𝑡}𝑡≥0 is a martingale if E (𝑋𝑠 | 𝑋𝑡) = 𝑋𝑡

for all 𝑠 ≥ 𝑡.

The homogeneous Poisson process corrected for its mean is a martingale. That is,

𝐻𝑡 − 𝜆𝑡 is a martingale. The following is a standard result in martingale theory.

Theorem 98 (Doob’s martingale inequality). If {𝑋𝑡}𝑡≥0 is a martingale, then for all 𝑇 ≥ 0 and

𝐶 > 0,

P

(
sup
𝑡∈[0,𝑇]

𝑋𝑡 ≥ 𝐶
)
≤ E (max(𝑋𝑇 , 0))

𝐶
.
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Further, for 𝑟 ≥ 1, we have

P

(
sup
𝑡∈[0,𝑇]

|𝑋𝑡 | ≥ 𝐶
)
≤ E ( |𝑋𝑇 |𝑟)

𝐶𝑟
.

A.2 Extension to Schools Having Multiple Seats

In Section 1.2.4, we discussed an extension of our model for the case that each school

has 𝑞 = 1, 2, 3, . . . seats. In this appendix, we trace the steps of Section 1.2 for the case of

arbitrary 𝑞 in more detail and discuss in more depth the results stated in the main body.

The discrete model with multiple seats. We fix 𝑞 ∈ N and do not include it in super-

scripts for brevity. We let 𝑛 ∈ N be the number of schools and 𝑑 ≥ 1 be the list length.

It is now not enough to keep track just of 𝑇𝑛,𝑑
𝑖

, now defined to be the number of schools

with no remaining seats after students {1, 2, . . . , 𝑖 − 1} have had their turn. Instead, we

must additionally keep track of the vector 𝑆𝑖 = (𝑆0
𝑖
, 𝑆1
𝑖
, 𝑆2
𝑖
, . . . , 𝑆

𝑞−1
𝑖

) counting the number

of schools with 𝑘 = 0, 1, . . . , 𝑞 − 1 seats taken at this point. Given this information, we can

now see the market dynamics.

When it is the turn of student 𝑖, the probability that they get matched to any school in

their list (or equivalent the complement of the probability that they pick exactly 𝑑 schools

with no seats remaining) is still the same one given in (1.3),

P
(
𝑀
𝑛,𝑑
𝑖

= 1 | 𝑇𝑛,𝑑
𝑖

= 𝑘

)
=


1 − (𝑘𝑑)

(𝑛𝑑)
, 𝑘 ≥ 𝑑,

1, otherwise.

It is also approximated by the same expression as Lemma 12, derived from sampling with

replacement. On the other hand, if a student picks any school with a remaining seat, then

that school will have 𝑘 seats occupied with probability 𝑆𝑘
𝑖
/∑𝑞−1

𝑗=0 𝑆
𝑗

𝑖
(that is, conditional

on the school having a remaining seat, we simply randomly pick any such school). The

update rule for the counts is then as follows. If the chosen school has 𝑘 seats taken, we
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have 𝑆𝑘
𝑖+1 = 𝑆𝑘

𝑖
−1, and if 𝑘 < 𝑞−1 then 𝑆𝑘+1

𝑖+1 = 𝑆𝑘+1
𝑖

+1 whereas if 𝑘 = 𝑞−1 then 𝑇𝑛,𝑑
𝑖+1 = 𝑇

𝑛,𝑑
𝑖

+1.

Note that we always have 𝑇𝑛,𝑑
𝑖

+ ∑𝑞−1
𝑗=0 𝑆

𝑗

𝑖
= 𝑛.

The continuous model with multiple seats. We now construct continuous analogues

to 𝑇𝑛,𝑑
𝑖

and 𝑆𝑖 for 𝑖 = ⌊𝑡𝑛⌋, letting 𝑥𝑑 (𝑡) be the proportion of schools with all seats taken,

and 𝑦𝑘
𝑑
(𝑡) be the proportion of schools with 𝑘 seats taken for 𝑘 = 0, . . . , 𝑞 − 1. Initially no

schools have any seats taken, so

𝑦0
𝑑 (0) = 1,

𝑦𝑘𝑑 (0) = 0, 𝑘 = 1, 2, . . . , 𝑞 − 1,

𝑥𝑑 (0) = 0.

The probability that student 𝑡 is matched to any school is 1 − 𝑥𝑑 (𝑡)𝑑 , and otherwise, the

proportion of time they get matched to a school with 𝑘 seats taken is proportional to 𝑆𝑘
𝑖
.

We therefore get that the rate at which schools with 𝑘 seats taken become schools with

𝑘 + 1 seats taken is

(1 − 𝑥𝑑 (𝑡)𝑑)
𝑦𝑘
𝑑
(𝑡)∑𝑞−1

𝑚=0 𝑦
𝑚
𝑑
(𝑡)

=
1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

𝑦𝑘𝑑 (𝑡),

since 𝑥𝑑 (𝑡) +
∑𝑞−1
𝑘=0 𝑦

𝑘
𝑑
(𝑡) = 1. Note further that this is a positive flow into 𝑦𝑘+1

𝑑
and negative

for 𝑦𝑘
𝑑
. We have each of these flows from 𝑦𝑘

𝑑
to 𝑦𝑘+1

𝑑
for 𝑘 = 0, . . . , 𝑞 − 1 and one from 𝑦

𝑞−1
𝑑

to 𝑥𝑑 . For convenience, define

𝛾𝑑 (𝑡) =
1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

.
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Denoting derivative with respect to time with a dot for clarity to avoid multiple super-

scripts, this gives us the following differential equation

¤𝑦0
𝑑 (𝑡) = −𝛾𝑑 (𝑡)𝑦0

𝑑 (𝑡),

¤𝑦𝑘𝑑 (𝑡) = 𝛾𝑑 (𝑡) (𝑦
𝑘−1
𝑑 (𝑡) − 𝑦𝑘𝑑 (𝑡)), 𝑘 = 1, . . . , 𝑞 − 1,

¤𝑥𝑑 (𝑡) = 𝛾𝑑 (𝑡)𝑦𝑞−1
𝑑

(𝑡).

Putting these together, we have the initial value problem (1.8) stated in the main body.

Note in particular that for 𝑞 = 1, we get

𝑦0
𝑑 (0) = 1, ¤𝑦0

𝑑 (𝑡) = −1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

𝑦0
𝑑 (𝑡),

𝑥𝑑 (0) = 0, ¤𝑥𝑑 (𝑡) =
1 − 𝑥𝑑 (𝑡)𝑑
1 − 𝑥𝑑 (𝑡)

𝑦0
𝑑 (𝑡).

This directly gives us ¤𝑦0
𝑑
(𝑡)+ ¤𝑥𝑑 (𝑡) = 0, so with the initial condition, we have 𝑦0

𝑑
(𝑡)+𝑥𝑑 (𝑡) = 1

for all 𝑡 ≥ 0. Rearranging since 𝑥𝑑 (𝑡) < 1, we write
𝑦0
𝑑
(𝑡)

1−𝑥𝑑 (𝑡) = 1, and the last equation reduces

to the familiar 𝑥𝑑 (0) = 0, ¤𝑥𝑑 (𝑡) = 1 − 𝑥𝑑 (𝑡)𝑑 , showing how this is an extension of the 𝑞 = 1

case in (1.4).

Connection with the discrete model. Following the steps in Section 1.2.3, we can apply

a slightly more general version of Theorem 6 for this multi-dimensional case, again from

[36, Theorem 17.3.1] to prove the following lemma.

Lemma 99. Fix 𝑑 ∈ N, 𝑞 = 1, 2, . . . and let 𝑇𝑛,𝑑
𝑖

and 𝑆𝑘
𝑖

for 𝑘 = 0, . . . , 𝑞 − 1 be defined as in

this section. Then 𝑛−1𝑇
𝑛,𝑑

⌊𝑡𝑛⌋ → 𝑥𝑑 (𝑡) and 𝑛−1𝑆𝑘⌊𝑡𝑛⌋ → 𝑦𝑘
𝑑
(𝑡) for 𝑘 = 0, 1, . . . , 𝑞 − 1 uniformly in

probability as 𝑛→ ∞, where {𝑥𝑑 (𝑡), 𝑦𝑘𝑑 (𝑡)} for 𝑘 = 0, 1, . . . , 𝑞−1 is the unique solution satisfying

the initial value problem (1.8) for 𝑡 ≥ 0.

Proof. The proof follows identically to the proof of Theorem 6 in Section 1.3, adapted to

the case of multiple dimensions. □
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We also have the following lemma connecting the match probability for 𝑞 > 1. Note

that the difference to Lemma 7 is simply that this time ¤𝑥𝑑 (𝑡) is not necessarily equal to

1 − 𝑥𝑑 (𝑡)𝑑 .

Lemma 100. For all 𝑑 ∈ N, 𝑡 ≥ 0, we have P(𝑀𝑛,𝑑,𝑞

⌊𝑡𝑛⌋ = 1) → 1 − 𝑥𝑑 (𝑡)𝑑 as 𝑛→ ∞.

Proof. The proof follows similarly to the proof of Lemma 7. □

Dynamics of the multiple seats model for 𝑑 = 1. Observe that for 𝑑 = 1, we have

𝛾𝑑 ≡ 1. As in the earlier continuous model, we can again solve this explicitly. It’s easy to

see we get 𝑦0
1(𝑡) = exp(−𝑡), and for 𝑘 = 1, we now have ¤𝑦1

1 = exp(−𝑡) − 𝑦1
1, which yields

𝑦1
1(𝑡) = 𝑡 exp(−𝑡). Following this pattern, we have

𝑦𝑘1 (𝑡) =
𝑡𝑘

𝑘!
𝑒−𝑡 , 𝑘 = 0, . . . , 𝑞 − 1,

𝑥1(𝑡) = 1 − 𝑒−𝑡
𝑞−1∑︁
𝑘=0

𝑡𝑘

𝑘!
. (A.3)

Readers familiar with probability or phase-type distributions will note that 𝑥1(𝑡) is the

cumulative distribution function of an Erlang distribution with parameters 𝑘 = 𝑞 and

𝜆 = 1. Figure A.1 shows the solution for 𝑑 = 1, 𝑞 = 4.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0

y1
0(t)

y1
1(t)

y1
2(t)

y1
3(t)

x1(t)

Figure A.1: Solution to the multiple-seat continuous market for 𝑑 = 1 and 𝑞 = 4.
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Discussion of dynamics for 𝑞 > 1. The fact that 𝛾𝑑 multiplies every equation in (1.8)

suggests the following idea. Define an initial value problem for 𝜏𝑑 as

𝜏𝑑 (0) = 0, ¤𝜏𝑑 (𝑡) =
1 − 𝑥1(𝜏𝑑 (𝑡))𝑑
1 − 𝑥1(𝜏𝑑 (𝑡))

. (A.4)

It is then not hard to show that the following holds

𝑦𝑘𝑑 (𝑡) = 𝑦
𝑘
1 (𝜏𝑑 (𝑡)), 𝑘 = 0, 1, . . . , 𝑞 − 1

𝑥𝑑 (𝑡) = 𝑥1(𝜏𝑑 (𝑡)). (A.5)

This suggests a procedure for computing solutions to the initial value problem defined

by (1.8): first compute a solution to (A.3), then solve (A.4) to compute 𝜏𝑑 (𝑡) and plug it

into (A.5).

We further remark that one can interpret 𝜏𝑑 (𝑥) as describing the ratio of how much

faster students are matched to schools when they get 𝑑 > 1 tries compared to a single try.

1− 𝑥𝑑1 is the probability of getting matched to any school given a list of length 𝑑 and 1− 𝑥1

is that probability with lists of length 1. The interpretation via (A.5) then tells us that the

case for general 𝑑 is exactly the same as for 𝑑 = 1 except now the rate at which students

are matched to schools is rescaled by a time-dependent factor of 𝜏𝑑 .

A.3 Missing Proofs

This appendix is divided into two sections in order to reduce nesting and allow the

reader to follow the high-level techniques in our technical theorems. This section contains

the main technical theorems preceded by a list of intricate inequalities needed in their

proofs. The proofs of those inequalities are placed in Section A.3.2.
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A.3.1 Main technical proofs

Notation. In this appendix, 𝑥𝑑 (𝑡) always refers to the (unique) solution of the initial

value problem (1.4) in Section 1.2.2 given by

𝑥𝑑 (0) = 0, 𝑥′𝑑 (𝑡) = 1 − 𝑥𝑑 (𝑡)𝑑 .

We often rely on its integral representation introduced in Lemma 15, which states that

𝑡 =

∫ 𝑥𝑑 (𝑡)

0

1
1 − 𝑢𝑑

𝑑𝑢.

We use the notation 𝑥𝑑 (𝑡), 𝑥(𝑑, 𝑡) or simply 𝑥 interchangeably.

A useful identity. We begin by proving a useful technical lemma that we use heavily.

Lemma 101. Let 𝑑 ≥ 1 and 𝑧 ∈ [0, 1), then

∫ 𝑧

0

𝑑𝑢

1 − 𝑢𝑑
= 𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
. (A.6)

Let 𝑞 ∈ (0, 1] and 𝐴 ∈ [0, 1), then

∫ 𝐴𝑞

0

1 + log(𝑢)
1 − 𝑢1/𝑞 𝑑𝑢 = 𝐴𝑞

(
(1 + log(𝐴𝑞))

∞∑︁
𝑛=0

𝑞𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=0

𝑞2𝐴𝑛

(𝑛 + 𝑞)2

)
. (A.7)

Proof. (1 − 𝑢𝑑)−1 is the sum of a geometric series in 𝑢𝑑 ∈ (0, 1), so with 𝑧 ∈ [0, 1) write

∫ 𝑧

0

𝑑𝑢

1 − 𝑢𝑑
=

∫ 𝑧

0

∞∑︁
𝑟=0

𝑢𝑟𝑑 𝑑𝑢 =

∞∑︁
𝑟=0

∫ 𝑧

0
𝑢𝑟𝑑 𝑑𝑢 =

∞∑︁
𝑟=0

𝑧𝑟𝑑+1

𝑟𝑑 + 1
= 𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
.

The validity of exchanging the order of summation and integration follows by the Tonelli

theorem since the integrand is non-negative.
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For the second expression, we similarly write

∫ 𝐴𝑞

0

1 + log(𝑢)
1 − 𝑢1/𝑞 𝑑𝑢 =

∫ 𝐴𝑞

0

∞∑︁
𝑛=0

𝑢𝑛/𝑞 (1 + log(𝑢)) 𝑑𝑢

=

∞∑︁
𝑛=0

∫ 𝐴𝑞

0
𝑢𝑛/𝑞 (1 + log(𝑢)) 𝑑𝑢

=

∞∑︁
𝑛=0

(
𝑞𝐴𝑛+𝑞

𝑛 + 𝑞 +
𝑞𝐴𝑛+𝑞 log(𝐴𝑞)

𝑛 + 𝑞 − 𝑞2𝐴𝑛+𝑞

(𝑛 + 𝑞)2

)
= 𝐴𝑞

(
(1 + log(𝐴𝑞))

∞∑︁
𝑛=0

𝑞𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=0

𝑞2𝐴𝑛

(𝑛 + 𝑞)2

)
.

Here again, one may apply the Tonelli theorem: even though the integrand is itself not

non-negative, one can split 1 + log(𝑢) into two parts getting a non-negative and a non-

positive integral. □

Proof of Lemma 18. We next prove Lemma 18 which our main theorems hinge one, and

which states bounds on the match probability of the last student in a balanced market.

Before we proceed to prove the lemma, we state some inequalities that we will need,

whose proofs are deferred to the next section.

Lemma 102. For 𝑞 ∈ [0, 1], we have

(
𝑞 + 1
𝑞 + 2

)𝑞 (
1 +

(
𝑞

𝑞 + 1

)
log(𝑞 + 2)

)
≥ 1, (A.8)(

𝑞 + 2
𝑞 + 4

)𝑞 (
1 − 𝑞2(𝑞 + 2)

(𝑞 + 1) (𝑞 + 4) − 𝑞 log
(

2
𝑞 + 4

))
≤ 1. (A.9)

Lemma 103. For 𝑑 ≥ 1, we have
(

2𝑑+1
4𝑑+1

)1/𝑑
≤ 𝑥(𝑑, 1) ≤

(
𝑑+1

2𝑑+1

)1/𝑑
.

Proof. We first show the upper bound. Recall 𝑥(𝑑, 1) is defined via

1 =

∫ 𝑥(𝑑,1)

0

𝑑𝑢

1 − 𝑢𝑑
.
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(1 − 𝑢𝑑)−1 is strictly positive, so the integral is increasing in the upper limit and it suffices

to show

∫ 𝑥(𝑑,1)

0

𝑑𝑢

1 − 𝑢𝑑
≤

∫ ( 𝑑+1
2𝑑+1 )

1/𝑑

0

𝑑𝑢

1 − 𝑢𝑑
,

or equivalently

1 ≤
∫ ( 𝑑+1

2𝑑+1 )
1/𝑑

0

𝑑𝑢

1 − 𝑢𝑑
.

Now apply the identity from (A.6) in Lemma 101 to write

∫ 𝑧

0

𝑑𝑢

1 − 𝑢𝑑
= 𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
≥ 𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟 (𝑑 + 1)

)
= 𝑧

(
1 − 1

𝑑 + 1
log(1 − 𝑧𝑑)

)
.

The last line follows from the Maclaurin series of log(1 − 𝑦) for 𝑦 ≤ 1. We need to show

that this is lower bounded by 1. Substitute 𝑞 = 1/𝑑, so 𝑞 ∈ (0, 1] and 𝑧 =
(
𝑞+1
𝑞+2

)𝑞
, to get

𝑧

(
1 − 1

𝑑 + 1
log(1 − 𝑧𝑑)

)
=

(
𝑞 + 1
𝑞 + 2

)𝑞 (
1 − 1

1/𝑞 + 1
log

(
1 − 𝑞 + 1

𝑞 + 2

))
=

(
𝑞 + 1
𝑞 + 2

)𝑞 (
1 +

(
𝑞

𝑞 + 1

)
log(𝑞 + 2)

)
.

We complete the proof by showing this is lower bounded by 1 in inequality (A.8) of

Lemma 102.

For the lower bound on 𝑥(𝑑, 1), we apply identical reasoning up to the application of

the identity in (A.6) of Lemma 101 and must now show

1 ≥ 𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
.
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We now substitute 𝑧 =
(

2𝑑+1
4𝑑+1

)1/𝑑
with 𝑞 = 1/𝑑, and write

𝑧

(
1 +

∞∑︁
𝑟=1

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
= 𝑧

(
1 + 𝑧𝑑

𝑑 + 1
+

∞∑︁
𝑟=2

(𝑧𝑑)𝑟
𝑟𝑑 + 1

)
≤ 𝑧

(
1 + 𝑧𝑑

𝑑 + 1
+

∞∑︁
𝑟=2

(𝑧𝑑)𝑟
𝑟𝑑

)
= 𝑧

(
1 + 𝑧𝑑

𝑑 + 1
− 𝑧𝑑

𝑑
− 1
𝑑

log(1 − 𝑧𝑑)
)

= 𝑧

(
1 − 𝑧𝑑

𝑑 (𝑑 + 1) −
1
𝑑

log(1 − 𝑧𝑑)
)

=

(
𝑞 + 2
𝑞 + 4

)𝑞 (
1 − 𝑞2(𝑞 + 2)

(𝑞 + 1) (𝑞 + 4) − 𝑞 log
(

2
𝑞 + 4

))
.

We again defer the inequality to (A.9) of Lemma 102 where we show this is upper bounded

by 1. □

Proof of Theorem 8 We next prove Theorem 8, by bounding an appropriate integral.

Again, we state some inequalities up front (whose proofs appear in the next section) be-

fore proceeding to the main proof.

Lemma 104. For 𝑞 ∈ [0, 1] and 𝐴 =
𝑞+1
𝑞+2 , we have

−
log(2)

1 + 𝑞 log(2) ≤ log(𝐴) ≤ −
2 log2(2)
𝑞 + 2 log(2) , (A.10)

2𝐴(1 + 𝑞𝐴(log(4) − 1)) ≤ 1 + 𝑞 log(2), (A.11)
∞∑︁
𝑛=2

𝐴𝑛−2

𝑛 + 𝑞 ≤ 2(log(4) − 1). (A.12)

Theorem 8. For all ℓ > 𝑑 ≥ 1 and for all 𝑡 ∈ (0, 1], 𝑥′
ℓ
(𝑡) > 𝑥′

𝑑
(𝑡).

Proof. Applying Lemma 16, it suffices to show that for 𝑡 ∈ (0, 1], 𝑑 ≥ 1, we have

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 < 0. (A.13)
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This is because if 𝑥′
𝑑
(𝑡) is strictly increasing in 𝑑, then for any ℓ ≥ 𝑑 it must also hold that

𝑥′
ℓ
(𝑡) > 𝑥′

𝑑
(𝑡) for 𝑡 ∈ (0, 1].

Observe that 𝑥(𝑑, 𝑡) is strictly increasing in 𝑡 and that 𝑥(𝑑, 𝑡) ≤ 𝑡. The integrand in

(A.13) is negative on 𝑢 ∈ [0, 1/𝑒] and vanishes at 𝑢 = 1/𝑒 after which it remains non-

negative. The result therefore follows immediately for 𝑥(𝑑, 𝑡) ∈ [0, 1/𝑒], and for 𝑥(𝑑, 𝑡) >

1/𝑒, one may write

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 <

∫ 𝑥(𝑑,1)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢.

In Lemma 18 we showed that for 𝑑 ≥ 1,

𝑥(𝑑, 1) ≤
(
𝑑 + 1

2𝑑 + 1

)1/𝑑
.

To prove the theorem, it therefore remains to show that for 𝑑 ≥ 1,

∫ ( 𝑑+1
2𝑑+1 )

1/𝑑

0

1 + log(𝑢)
1 − 𝑢𝑑

𝑑𝑢 ≤ 0.

To proceed, change variables with 𝑞 = 1/𝑑 (so 𝑞 ∈ (0, 1]) and define 𝐴 = 𝑑+1
2𝑑+1 =

𝑞+1
𝑞+2 , then

apply the identity (A.7) of Lemma 101 to write

∫ 𝐴𝑞

0

1 + log(𝑢)
1 − 𝑢1/𝑞 𝑑𝑢 = 𝐴𝑞

(
(1 + log(𝐴𝑞))

∞∑︁
𝑛=0

𝑞𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=0

𝑞2𝐴𝑛

(𝑛 + 𝑞)2

)
= 𝐴𝑞

(
(1 + 𝑞 log(𝐴))

(
1 + 𝑞𝐴

𝑞 + 1
+ 𝑞𝐴2

∞∑︁
𝑛=2

𝐴𝑛−2

𝑛 + 𝑞

)
− 1 − 𝑞2𝐴

(𝑞 + 1)2 −
∞∑︁
𝑛=2

𝑞2𝐴𝑛

(𝑛 + 𝑞)2

)
≤ 𝐴𝑞

(
(1 + 𝑞 log(𝐴))

(
1 + 𝑞𝐴

𝑞 + 1
+ 2𝑞𝐴2(log(4) − 1)

)
− 1 − 𝑞2𝐴

(𝑞 + 1)2

)
≤ 𝐴𝑞

(
(1 + 𝑞 log(𝐴))2𝐴(1 + 𝑞𝐴(log(4) − 1)) − 1 − 𝑞2

(𝑞 + 2)2

)
≤ 𝐴𝑞

((
1 −

2𝑞 log2(2)
𝑞 + log(4)

)
(1 + 𝑞 log(2)) − 1 − 𝑞2

(𝑞 + 2)2

)
.
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In the first inequality we removed non-positive terms and applied (A.12) of Lemma 104.

In the second inequality we applied the facts that 1 + 𝑞𝐴

𝑞+1 = 2𝐴 and 𝑞2

(𝑞+2)2 ≤ 𝑞2𝐴

(𝑞+1)2 . The last

line follows from (A.10) and (A.11) of Lemma 104.

Since 𝐴𝑞 is positive, we need to show the rest of the expression is non-positive. This is

true at equality for 𝑞 = 0, so it suffices to show that the derivative is non-positive, which

is the case since

𝜕

𝜕𝑞

((
1 −

2𝑞 log2(2)
𝑞 + log(4)

)
(1 + 𝑞 log(2)) − 1 − 𝑞2

(𝑞 + 2)2

)

= 𝑞
©­­«

log(2)
(
1 − 2 log2(2)

)
(𝑞 + log(16))

(𝑞 + log(4))2 − 4
(𝑞 + 2)3

ª®®¬
≤ 𝑞

©­­«
log(2)

(
1 − 2 log2(2)

)
(1 + log(16))

(0 + log(4))2 − 4
(1 + 2)3

ª®®¬
≈ −0.09𝑞

≤ 0,

as required. □

Proof of Theorem 9 We close this section with a proof of Theorem 9. The following

inequalities are used in the proof, they will be verified in the next section.

Lemma 105. For 𝑞 ∈ [0, 1] and 𝐴 = 1
2 + 𝑞

𝑞+1 , the following inequalities hold

log
(
1
2
+ 𝑞

𝑞 + 1

)
≥ 𝑞

𝑞 + 1
− log(2) ≥ 𝑞

2
− log(2), (A.14)

log(𝐴𝑞) ≥ −
log(2)

4
. (A.15)

Theorem 9. For all 𝑑 ≥ 1, there exists 𝑐(𝑑) > 1 such that for all ℓ > 𝑑 and 𝑡 ≥ 𝑐(𝑑), 𝑥′
ℓ
(𝑡) <

𝑥′
𝑑
(𝑡). Furthermore, 𝑐(𝑑) → 1 as 𝑑 → ∞.
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Proof. Via an application of Lemma 16, it suffices to show that for all 𝑑 ≥ 1, there exists

𝑐(𝑑), such that

1. 𝑐(𝑑) ≥ 1,

2. 𝑐(𝑑) → 1 as 𝑑 → ∞, and

3. for all 𝑡 ≥ 𝑐(𝑑),

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 > 0. (A.16)

This is because 𝑐(𝑑) is decreasing, and so for any ℓ ≥ 𝑑 and 𝑡 ≥ 𝑐(𝑑), it must hold that

𝑥′
ℓ
(𝑡) < 𝑥′

𝑑
(𝑡), which would complete the proof.

For 𝑑 = 1, the result follows from the discussion in Section 1.2.3, so we take 𝑑 > 1 from

now on. Define 𝜑(𝑑) and 𝑐(𝑑) as follows

𝜑(𝑑) =
(
1
2
+ 1
𝑑 + 1

)1/𝑑
,

𝑐(𝑑) =
∫ 𝜑(𝑑)

0

1
1 − 𝑣𝑑

𝑑𝑣.

That is, we define 𝑐(𝑑) implicitly via 𝜑(𝑑) = 𝑥(𝑑, 𝑐(𝑑)). Observe that (1 − 𝑣𝑑)−1 is strictly

positive for 𝑑 > 1, 𝑣 ∈ [0, 1), so for 𝑥(𝑑, 𝑡) ∈ [0, 1), such an implicit equation is well

defined, and in particular, 𝑥(𝑑, 𝑡) is strictly increasing in 𝑡.

We now show that this choice of 𝑐 satisfies the three conditions of the premise.

For 𝑑 > 1, we have 1 > 𝜑(𝑑) >
(
𝑑+1

2𝑑+1

)1/𝑑
, and by Lemma 18,

(
𝑑+1

2𝑑+1

)1/𝑑
≥ 𝑥(𝑑, 1), so

𝑐(𝑑) ≥ 1. This shows the first condition.

Note that 𝑐 is continuous, so to show lim𝑑→∞ 𝑐(𝑑) = 1, it suffices to show lim𝑞→0+ 𝑐(1/𝑞) =
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1. To do so, fix 𝑞 ∈ (0, 1), then apply identity (A.6) of Lemma 101,

𝑐(1/𝑞) =
∫ 𝜑(1/𝑞)

0

1
1 − 𝑣1/𝑞 𝑑𝑣

= 𝜑(1/𝑞)
(
1 +

∞∑︁
𝑟=1

𝜑(1/𝑞)𝑟/𝑞
𝑟/𝑞 + 1

)

=

(
1
2
+ 𝑞

𝑞 + 1

)𝑞 ©­­«1 + 𝑞
∞∑︁
𝑟=1

(
1
2 + 𝑞

𝑞+1

)𝑟
𝑟 + 𝑞

ª®®¬ ,
and now it’s easy to see that lim𝑞→0+ 𝑐(1/𝑞) = 1. This shows the second condition.

We finally need to show that for 𝑡 ≥ 𝑐(𝑑),

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 ≥ 0. (A.17)

We have 𝑡 ≥ 𝑐(𝑑) if and only if 𝑥(𝑑, 𝑡) ≥ 𝑥(𝑑, 𝑐(𝑑)) = 𝜑(𝑑). Since the integrand of (A.17) is

positive for 𝑢 > 1/𝑒, and 𝜑(𝑑) > 1/𝑒, we have that for 𝑡 ≥ 𝑐(𝑑),

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 >

∫ 𝜑(𝑑)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢, (A.18)

and so it suffices to prove the right hand side is non-negative.

To do so, apply again identity (A.7) of Lemma 101 with 𝑞 = 1/𝑑 and 𝐴 = 1
2+

1
𝑑+1 = 1

2+
𝑞

𝑞+1
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to get

∫ 𝜑(𝑑)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 =

∫ 𝐴𝑞

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢

= 𝐴𝑞

(
(1 + log(𝐴𝑞))

∞∑︁
𝑛=0

𝑞𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=0

𝑞2𝐴𝑛

(𝑛 + 𝑞)2

)
= 𝑞𝐴𝑞

(
log(𝐴) + (1 + log(𝐴𝑞))

∞∑︁
𝑛=1

𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=1

𝑞𝐴𝑛

(𝑛 + 𝑞)2

)
= 𝑞𝐴𝑞

( ∞∑︁
𝑛=1

(−1)𝑛+1(𝐴 − 1)𝑛
𝑛

+ (1 + log(𝐴𝑞))
∞∑︁
𝑛=1

𝐴𝑛

𝑛 + 𝑞 −
∞∑︁
𝑛=1

𝑞𝐴𝑛

(𝑛 + 𝑞)2

)
=

∞∑︁
𝑛=1

𝑞𝐴𝑛+𝑞
[
−1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 + log(𝐴𝑞)) 1

𝑛 + 𝑞 − 𝑞

(𝑛 + 𝑞)2

]
.

We have 𝑞𝐴𝑛+𝑞 ≥ 0, so defining

𝐾𝑛 (𝑞) = −1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 + log(𝐴𝑞)) 1

𝑛 + 𝑞 − 𝑞

(𝑛 + 𝑞)2 ,

it suffices to show 𝐾𝑛 (𝑞) ≥ 0 for all 𝑛 = 1, 2, 3, . . . in order to complete the proof. We first

show 𝐾1(𝑞) ≥ 0 and 𝐾2(𝑞) ≥ 0, then prove 𝐾𝑛 (𝑞) ≥ 0 for 𝑛 ≥ 3.

To show 𝐾1(𝑞) ≥ 0, use (A.14) of Lemma 105 to write

𝐾1(𝑞) = −1 − 𝐴
𝐴

+ (1 + 𝑞 log(𝐴)) 1
𝑞 + 1

− 𝑞

(𝑞 + 1)2 (A.19)

=
𝑞

(𝑞 + 1)2(3𝑞 + 1)

[
𝑞2 + 𝑞 + 2 + (𝑞 + 1) (3𝑞 + 1) log

(
1
2
+ 𝑞

𝑞 + 1

)]
(A.20)

≥ 𝑞

(𝑞 + 1)2(3𝑞 + 1)

[
𝑞2 + 𝑞 + 2 + (𝑞 + 1) (3𝑞 + 1)

(
𝑞

𝑞 + 1
− log(2)

)]
(A.21)

=
𝑞

(𝑞 + 1)2(3𝑞 + 1)
[
2 − log(2) + 2𝑞(1 − 2 log(2)) + 𝑞2(4 − 3 log(2))

]
(A.22)

≥ 𝑞

(𝑞 + 1)2(3𝑞 + 1)
[
2 − log(2) − 𝑞

]
(A.23)

≥ 0. (A.24)

Here we used 4 − 3 log(2) ≥ 0 and 2 − 4 log(2) ≥ −1.
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For 𝐾2(𝑞) ≥ 0, write similarly using (A.14) of Lemma 105 again

𝐾2(𝑞) = −1
2

(
1 − 𝐴
𝐴

)2

+ (1 + 𝑞 log(𝐴)) 1
𝑞 + 2

− 𝑞

(𝑞 + 2)2 (A.25)

=
1

2(3𝑞 + 1)2(𝑞 + 2)2

[
−(𝑞 − 1)2(𝑞 + 2)2 + 4(3𝑞 + 1)2 + 2𝑞(3𝑞 + 1)2(𝑞 + 2) log

(
1
2
+ 𝑞

𝑞 + 1

)]
(A.26)

≥ 1
2(3𝑞 + 1)2(𝑞 + 2)2

[
−(𝑞 − 1)2(𝑞 + 2)2 + 4(3𝑞 + 1)2 + 2𝑞(3𝑞 + 1)2(𝑞 + 2)

(𝑞
2
− log(2)

)]
(A.27)

≥ 1
2(3𝑞 + 1)2(𝑞 + 2)2

[
−(𝑞 − 1)2(𝑞 + 2)2 + 4(3𝑞 + 1)2 − 3𝑞(3𝑞 + 1)2] (A.28)

=
𝑞

2(3𝑞 + 1)2(𝑞 + 2)2

[
25 − 𝑞(𝑞2 + 29𝑞 − 21)

]
(A.29)

≥ 0. (A.30)

Here we used the fact that 2(𝑞 + 2)
( 𝑞

2 − log(2)
)
≥ −3 (this is an increasing quadratic on

𝑞 ∈ [0, 1], and at 𝑞 = 0 it takes value −4 log(2) > −3). The last line follows because

𝑞2 + 29𝑞 − 21 ∈ [−21, 9].

We now proceed to show 𝐾𝑛 (𝑞) ≥ 0, first on 𝑞 ∈ [0, 1/2), then on 𝑞 ∈ [1/2, 1]. For the

former, observe that 𝐴 ≥ 1/2 so log(𝐴) ≥ log(1/2) = − log(2), and write

𝐾𝑛 (𝑞) = −1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 + log(𝐴𝑞)) 1

𝑛 + 𝑞 − 𝑞

(𝑛 + 𝑞)2

= −1
𝑛

(
1 − 𝑞
3𝑞 + 1

)𝑛
+ 𝑛

(𝑛 + 𝑞)2 +
𝑞 log(𝐴)
𝑛 + 𝑞

≥ −1
𝑛

(
1 − 𝑞
3𝑞 + 1

)𝑛
+ 𝑛

(𝑛 + 𝑞)2 −
𝑞 log(2)
𝑛 + 𝑞

≥ −1
𝑛
(1 − 𝑞)𝑛 + 𝑛

(𝑛 + 𝑞)2 −
𝑞 log(2)

𝑛

=
1
𝑛

(
𝑛2

(𝑛 + 𝑞)2 − (1 − 𝑞)𝑛 − 𝑞 log(2)
)
.

In the second inequality we use −(3𝑞 + 1)−𝑛 ≥ −1 and −(𝑛 + 𝑞)−1 ≥ −𝑛−1. Note that
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𝑛2

(𝑛+𝑞)2 ≥ 1 − 2𝑞
𝑛

. Further, 1 − (1 − 𝑞)𝑛 is concave in 𝑞 and equals 0 at 𝑞 = 0 and 1 − 2−𝑛 at

𝑞 = 1/2, so then 1 − (1 − 𝑞)𝑛 ≥ 2𝑞(1 − 2−𝑛) on 𝑞 ∈ [0, 1/2]. This yields

𝑛𝐾𝑛 (𝑞) ≥
𝑛2

(𝑛 + 𝑞)2 − (1 − 𝑞)𝑛 − 𝑞 log(2)

≥ 1 − 2𝑞
𝑛

− (1 − 𝑞)𝑛 − 𝑞 log(2)

≥ 2𝑞(1 − 2−𝑛) − 2𝑞
𝑛

− 𝑞 log(2)

= 𝑞

(
2(1 − 2−𝑛) − 2

𝑛
− log(2)

)
.

The multiplier for 𝑞 is increasing in 𝑛 and positive for 𝑛 = 3, so 𝐾𝑛 (𝑞) ≥ 0 for 𝑛 ≥ 3 and

𝑞 ≤ 1/2.

It remains to show that 𝐾3(𝑞) ≥ 0 for 𝑛 ≥ 3 and 𝑞 ∈ [1/2, 1]. To do so, define 𝛼 =

log(2)
4 ≈ 0.173, then apply (A.15) of Lemma 105 which states log(𝐴𝑞) ≥ −𝛼 to get

𝐾𝑛 (𝑞) = −1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 + log(𝐴𝑞)) 1

𝑛 + 𝑞 − 𝑞

(𝑛 + 𝑞)2

≥ −1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 − 𝛼) 1

𝑛 + 𝑞 − 𝑞

(𝑛 + 𝑞)2

≥ −1
𝑛

(
1 − 𝐴
𝐴

)𝑛
+ (1 − 𝛼) 1

𝑛 + 1
− 1

(𝑛 + 1)2

=
1
𝑛

(
𝑛((1 − 𝛼)𝑛 − 𝛼)

(𝑛 + 1)2 −
(
1 − 𝐴
𝐴

)𝑛)
.

Everything inside the brace is increasing in both 𝑞 and 𝑛, as we now argue. Only the

second term depends on 𝑞, and writing 1−𝐴
𝐴

=
1−𝑞
1+3𝑞 , it is clear that this is decreasing in 𝑞,

and so −
(

1−𝐴
𝐴

)𝑛
is also increasing in 𝑞 for fixed 𝑛. Also note that 1−𝐴

𝐴
∈ [0, 1], so −

(
1−𝐴
𝐴

)𝑛
is increasing in 𝑛. Finally we argue that the first term is increasing in 𝑛, by taking a

derivative and noting that it is non-negative for 𝑛 ≥ 3,

𝜕

𝜕𝑛

[
𝑛((1 − 𝛼)𝑛 − 𝛼)

(𝑛 + 1)2

]
=
𝑛(2 − 𝛼) − 𝛼

(𝑛 + 1)3 ≥ 0.
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We have shown that 𝐾𝑛 (𝑞) ≥ 0 for 𝑞 ∈ [0, 1] for all 𝑛 = 1, 2, 3, . . . , and so

∫ 𝑥(𝑑,𝑡)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 ≥
∫ 𝜑(𝑑)

0

1 + log 𝑢
1 − 𝑢𝑑

𝑑𝑢 =

∞∑︁
𝑛=1

𝑞𝐴𝑛+𝑞𝐾𝑛 (𝑞) ≥ 0. (A.31)

This shows the last point, and concludes the proof. □

A.3.2 Various useful inequalities

In this section, we prove Lemmas 102, 104 and 105, which amount to exercises in

calculus and do not hold much value for exposition or understanding the nature of our

main results. We prove Lemma 104 before Lemma 102 as the latter depends on the former.

Lemma 106. For 𝑞 ∈ [0, 1] and 𝐴 =
𝑞+1
𝑞+2 , we have

−
log(2)

1 + 𝑞 log(2) ≤ log(𝐴) ≤ −
2 log2(2)
𝑞 + 2 log(2) , (A.10)

2𝐴(1 + 𝑞𝐴(log(4) − 1)) ≤ 1 + 𝑞 log(2), (A.11)
∞∑︁
𝑛=2

𝐴𝑛−2

𝑛 + 𝑞 ≤ 2(log(4) − 1). (A.12)

Proof. For (A.10), begin by noting that the inequality holds at equality for 𝑞 = 0. Now

multiplying the first half by 1 + 𝑞 log(2), it is equivalent to

0 ≤
(
1 + 𝑞 log(2)

)
log

(
𝑞 + 1
𝑞 + 2

)
+ log(2).

We take the second derivative with respect to 𝑞

𝜕

𝜕𝑞

[ (
1 + 𝑞 log(2)

)
log

(
𝑞 + 1
𝑞 + 2

)]
= log(2) log

(
𝑞 + 1
𝑞 + 2

)
+

1 + 𝑞 log(2)
(𝑞 + 1) (𝑞 + 2) ,

𝜕2

𝜕2𝑞

[ (
1 + 𝑞 log(2)

)
log

(
𝑞 + 1
𝑞 + 2

)]
=
𝑞(3 log(2) − 2) + 4 log(2) − 3

(𝑞 + 1)2(𝑞 + 2)2 .

This is strictly negative for 𝑞 ∈ [0, 1], and so the original function is concave, which means
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that

(
1 + 𝑞 log(2)

)
log

(
𝑞 + 1
𝑞 + 2

)
+ log(2) ≥ (1 − 𝑞) · 0 + 𝑞

[ (
1 + log(2)

)
log

(
2
3

)
+ log(2)

]
≥ 0.

(A.32)

The second inequality of (A.10) holds at equality for 𝑞 = 0. Further, one can show that

the derivative of the difference is negative for 𝑞 ∈ [0, 1) since

𝜕

𝜕𝑞

(
log(𝐴) +

2 log2(2)
𝑞 + log(4)

)
=

1
(𝑞 + 1) (𝑞 + 2) −

2 log2(2)
(𝑞 + log(4))2 .

The fact that the right hand side is negative is simple to verify, for example by checking

that

(𝑞 + 1) (𝑞 + 2) ≥
(𝑞 + log(4))2

2 log2(2)
.

For (A.11), we need the following to be non-positive

2𝐴(1 + 𝑞𝐴(log(4) − 1)) − (1 + 𝑞 log(2)) = 𝑞2

(𝑞 + 2)2

[
𝑞(log(8) − 2) − 3 + log(16)

]
.

Now the inner term is clearly increasing in 𝑞, and negative at 𝑞 = 1, so (A.11) holds.

For (A.12) we start with the following elementary series identity for 𝑦 < 1,

− log(1 − 𝑦) =
∞∑︁
𝑛=1

𝑦𝑛

𝑛
. (A.33)

In particular, this now gives us

∞∑︁
𝑛=2

22−𝑛

𝑛
= −2 + 4

∞∑︁
𝑛=1

2−𝑛

𝑛
= 2(log(4) − 1).

In order to verify (A.12), it therefore remains to show that the following difference is non-
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positive,

∞∑︁
𝑛=2

𝐴𝑛−2

𝑛 + 𝑞 −
∞∑︁
𝑛=2

22−𝑛

𝑛
=

∞∑︁
𝑛=2

(
𝐴𝑛−2

𝑛 + 𝑞 − 22−𝑛

𝑛

)
= − 2𝑞

3(𝑞 + 3) +
∞∑︁
𝑛=4

(
𝐴𝑛−2

𝑛 + 𝑞 − 22−𝑛

𝑛

)
≤ − 2𝑞

3(𝑞 + 3) +
∞∑︁
𝑛=4

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
= − 2𝑞

3(𝑞 + 3) +
5∑︁
𝑛=4

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
+

(
𝐴4 − 2−4

6

)
+

∞∑︁
𝑛=7

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
.

We now proceed to bound each of the last three terms. Note that if 𝑔(𝑞) is a smooth

function with 𝑔(0) = 0 and 𝑔′(𝑞) ≤ 𝑀 on 𝑞 ∈ [0, 1], then via the fundamental theorem of

calculus, one has

𝑔(𝑞) = 𝑔(𝑞) − 𝑔(0) =
∫ 𝑞

0
𝑔′(𝑦) 𝑑𝑦 ≤

∫ 𝑞

0
𝑀 𝑑𝑦 = 𝑞 · 𝑀. (A.34)

We apply this identity to 𝑔𝑛 (𝑞) = 𝐴𝑛−2−22−𝑛

𝑛
for various values of 𝑛: observe that it is smooth

and satisfies 𝑔𝑛 (0) = 0. We compute

𝑔′𝑛 (𝑞) =
𝐴𝑛−1(𝑛 − 2)
𝑛(𝑞 + 1)2 , 𝑔′′𝑛 (𝑞) =

𝐴𝑛 (𝑛 − 2) (𝑛 − 2𝑞 − 5)
𝑛(𝑞 + 1)4

. (A.35)

In particular, we have 𝑔′𝑛 ≥ 0 for 𝑛 ≥ 4. For 𝑛 = 4 and 𝑛 = 5 we further have 𝑔′′𝑛 ≤ 0, which

means 𝑔′𝑛 is decreasing in 𝑞, and so 𝑔′𝑛 (𝑞) ≤ 𝑔′𝑛 (0), which establishes an upper bound we

will use with (A.34),

5∑︁
𝑛=4

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
=

5∑︁
𝑛=4

𝑔𝑛 (𝑞) ≤
5∑︁
𝑛=4

𝑞 · 𝑔′𝑛 (0) = 𝑞
5∑︁
𝑛=4

(
2𝑛−1(𝑛 − 2)

𝑛

)
=
𝑞

10
.

For 𝑛 = 6, one can verify via (A.35) that 𝑔′6(𝑞) is maximized at 𝑞 = 1/2, so 𝑔′6(𝑞) ≤ 𝑔
′
6(1/2),
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and

𝐴4 − 2−4

6
= 𝑔6(𝑞) ≤ 𝑞 · 𝑔′6(1/2) = 72𝑞

3125
.

Finally for 𝑛 ≥ 7, we have 𝑔′′𝑛 ≥ 0, so 𝑔𝑛 itself is convex, but note again 𝑔𝑛 (0) = 0, so

∞∑︁
𝑛=7

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
=

∞∑︁
𝑛=7

𝑔𝑛 (𝑞) ≤
∞∑︁
𝑛=7

𝑞 · 𝑔𝑛 (1) = 𝑞
∞∑︁
𝑛=7

(
(2/3)𝑛−2 − 22−𝑛

𝑛

)
≤ 𝑞

25
.

The bound in the last inequality can be computed using (A.34).

Combining the last three bounds on 𝑔𝑛 (𝑞) for various 𝑛, we complete the proof with

∞∑︁
𝑛=2

𝐴𝑛−2

𝑛 + 𝑞 −
∞∑︁
𝑛=2

22−𝑛

𝑛
≤ − 2𝑞

3(𝑞 + 3) +
5∑︁
𝑛=4

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
+

(
𝐴4 − 2−4

6

)
+

∞∑︁
𝑛=7

(
𝐴𝑛−2 − 22−𝑛

𝑛

)
≤ − 2𝑞

3(𝑞 + 3) +
𝑞

10
+ 72𝑞

3125
+ 𝑞

25

≤ − 2𝑞
3(𝑞 + 3) +

𝑞

6

= −𝑞(1 − 𝑞)
6(3 + 𝑞)

≤ 0,

which finally establishes (A.12). □

Lemma 107. For 𝑞 ∈ [0, 1], we have

(
𝑞 + 1
𝑞 + 2

)𝑞 (
1 +

(
𝑞

𝑞 + 1

)
log(𝑞 + 2)

)
≥ 1, (A.8)(

𝑞 + 2
𝑞 + 4

)𝑞 (
1 − 𝑞2(𝑞 + 2)

(𝑞 + 1) (𝑞 + 4) − 𝑞 log
(

2
𝑞 + 4

))
≤ 1. (A.9)

Proof. For (A.8), we move
(
𝑞+1
𝑞+2

)𝑞
to the other side and will operate on the logarithm of the
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inequality to equivalently show that

log
(
1 +

(
𝑞

𝑞 + 1

)
log (𝑞 + 2)

)
≥ 𝑞 log

(
𝑞 + 2
𝑞 + 1

)
. (A.36)

We start by stating two bounds for the logarithm. For 𝑦 ∈ [0, 1], we have

log(1 + 𝑦) ≥ 2𝑦
2 + 𝑦 , (A.37)

log(2 + 𝑦) ≥ log(2) + 𝑦
2
− 𝑦2

4(1 + 𝑦) . (A.38)

Both are easy to verify as they hold for 𝑦 = 0 and the difference of the left and the right side

has positive derivative on 𝑦 ∈ [0, 1]. In fact, the first holds for all 𝑦 ≥ 0 (note 2𝑦/(2 + 𝑦) =

𝑦 − 𝑦2/(2 + 𝑦)),

𝜕

𝜕𝑦

(
log(1 + 𝑦) − 𝑦 + 𝑦2

2 + 𝑦

)
=

𝑦2

(1 + 𝑦) (2 + 𝑦)2 ≥ 0.

The second for 𝑦 ∈ [0,
√

2],

𝜕

𝜕𝑦

(
log(2 + 𝑦) − log(2) − 𝑦

2
+ 𝑦2

4(1 + 𝑦)

)
=

𝑦(2 − 𝑦2)
4(1 + 𝑦)2(2 + 𝑦)

≥ 0.

Applying (A.37) and (A.38) to the left hand side of (A.36), we get

log
(
1 +

(
𝑞

𝑞 + 1

)
log (𝑞 + 2)

)
≥ log

(
1 +

(
𝑞

𝑞 + 1

) (
log(2) + 𝑞

2
− 𝑞2

4(𝑞 + 1)

))
= log

(
1 +

4𝑞(𝑞 + 1) log(2) + 𝑞2(𝑞 + 2)
4(𝑞 + 1)2

)
≥ 2 ×

4𝑞(𝑞 + 1) log(2) + 𝑞2(𝑞 + 2)
4(𝑞 + 1)2 × 4(𝑞 + 1)2

4𝑞(𝑞 + 1) log(2) + 𝑞2(𝑞 + 2) + 8(𝑞 + 1)2

=
8𝑞(𝑞 + 1) log(2) + 2𝑞2(𝑞 + 2)

4𝑞(𝑞 + 1) log(2) + 𝑞2(𝑞 + 2) + 8(𝑞 + 1)2 .
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Next apply (A.10) of Lemma 104, to the right hand side of (A.36),

𝑞 log(2)
1 + 𝑞 log(2) ≥ 𝑞 log

(
𝑞 + 2
𝑞 + 1

)
.

The proof now hinges on showing that

8𝑞(𝑞 + 1) log(2) + 2𝑞2(𝑞 + 2)
4𝑞(𝑞 + 1) log(2) + 𝑞2(𝑞 + 2) + 8(𝑞 + 1)2 ≥

𝑞 log(2)
1 + 𝑞 log(2) .

By collecting terms and simplifying, this holds if and only if

𝑞2 [
𝑞2 log(2) − 2(1 − log(2)) (2 log(2) − 1)𝑞 + 4(log(2) − 1)2] ≥ 0.

The inner term is now a quadratic in 𝑞, and in fact it has negative discriminant, so it has

no real roots and is always either positive or negative. One verifies that it is positive at

𝑞 = 0, so the quadratic is positive for all 𝑞 ∈ [0, 1], as required.

For (A.9), we first show the following three inequalities hold

(
𝑞 + 4
𝑞 + 2

)𝑞
≥ (𝑞 + 4)2

16
, (A.39)

log
(
2 + 𝑞

2

)
≤ log(2) + 1

4

(
1 − 𝑞

10

)
𝑞, (A.40)(

𝑞 + 4
𝑞 + 2

)𝑞−1

≥ 1
2
+ 𝑞

8
(1 + 4 log(2)). (A.41)

Observe that each of these holds for 𝑞 = 0 and 𝑞 = 1 and all expressions are smooth,

so it suffices to verify they hold for 𝑞 ∈ (0, 1), for instance by checking the sign of the

derivative.

For (A.39), take the logarithm of both sides and rearrange, after which we need

log
(
𝑞 + 4
𝑞 + 2

)
≥ 1
𝑞

log
(
(𝑞 + 4)2

16

)
=

2
𝑞

log
(
1 + 𝑞

4

)
.
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But now the left hand side always exceeds log(5/3) > 1/2, and the right hand side never

exceeds 1/2 because log(1 + 𝑞/4) ≤ 𝑞/4.

For (A.40), take the derivative of the difference of the left and right terms, which is

clearly negative

𝜕

𝜕𝑞

(
log

(
2 + 𝑞

2

)
− 1

4

(
1 − 𝑞

10

)
𝑞 − log(2)

)
=

1
𝑞 + 4

+ 𝑞 − 5
20

=
(𝑞 − 1)𝑞
20(𝑞 + 4) ≤ 0.

For (A.41), apply (A.39) to the derivative of the difference to get

𝜕

𝜕𝑞

[(
𝑞 + 4
𝑞 + 2

)𝑞−1

− 1
2
− 𝑞

8
(1 + 4 log(2))

]
=

(
𝑞 + 2
𝑞 + 4

) (
𝑞 + 4
𝑞 + 2

)𝑞 (
2(1 − 𝑞)

(2 + 𝑞) (4 + 𝑞) + log
(
𝑞 + 4
𝑞 + 2

))
− 1

8
− 1

2
log(2)

≥
(
𝑞 + 2
𝑞 + 4

)
(𝑞 + 4)2

16

(
2(1 − 𝑞)

(2 + 𝑞) (4 + 𝑞) + log
(
𝑞 + 4
𝑞 + 2

))
− 1

8
− 1

2
log(2)

=
(𝑞 + 2) (𝑞 + 4)

8

(
1
2

log
(
𝑞 + 4
𝑞 + 2

)
−

𝑞 + 4 log(2)
(𝑞 + 2) (𝑞 + 4)

)
≥ 1

2
log

(
𝑞 + 4
𝑞 + 2

)
−

𝑞 + 4 log(2)
(𝑞 + 2) (𝑞 + 4) .

This last expression vanishes at 𝑞 = 0, so we take one further derivative and show it is

positive,

𝜕

𝜕𝑞

[
1
2

log
(
𝑞 + 4
𝑞 + 2

)
−

𝑞 + 4 log(2)
(𝑞 + 2) (𝑞 + 4)

]
=

2(−3𝑞 + 4𝑞 log(2) − 8 + 12 log(2))
(𝑞 + 2)2(𝑞 + 4)2 ≥ 0,

since the denominator is positive and the numerator is linear and positive for 𝑞 = 0 and

𝑞 = 1.

Now to finally prove (A.9), observe it holds if only if

(
𝑞 + 4
𝑞 + 2

)𝑞
+ 𝑞2(𝑞 + 2)
(𝑞 + 1) (𝑞 + 4) − 𝑞 log

(
2 + 𝑞

2

)
− 1 ≥ 0. (A.42)
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Now apply (A.40) and (A.41) to the left hand side and write

(
𝑞 + 4
𝑞 + 2

)𝑞
+ 𝑞2(𝑞 + 2)
(𝑞 + 1) (𝑞 + 4) − 𝑞 log

(
2 + 𝑞

2

)
− 1

=

(
𝑞 + 4
𝑞 + 2

) (
𝑞 + 4
𝑞 + 2

)𝑞−1

+ 𝑞2(𝑞 + 2)
(𝑞 + 1) (𝑞 + 4) − 𝑞 log

(
2 + 𝑞

2

)
− 1

≥
(
𝑞 + 4
𝑞 + 2

) (
1
2
+ 𝑞

8
(1 + 4 log(2))

)
+ 𝑞2(𝑞 + 2)
(𝑞 + 1) (𝑞 + 4) − 𝑞

(
log(2) + 1

4

(
1 − 𝑞

10

)
𝑞

)
− 1

=
𝑞2 (

𝑞4 − 3𝑞3 − 11𝑞2 − 20𝑞2 log(2) + 53𝑞 − 100𝑞 log(2) + 100 − 80 log(2)
)

40(𝑞 + 1) (𝑞 + 2) (𝑞 + 4)

This is positive if 𝑞4 − 3𝑞3 − 11𝑞2 − 20𝑞2 log(2) + 53𝑞 − 100𝑞 log(2) + 100− 80 log(2) ≥ 0, but

this is a polynomial with two real roots, both at 𝑞 > 1, so since this equation is positive

for 𝑞 = 0, it must be non-negative for all 𝑞 ∈ [0, 1]. □

Lemma 108. For 𝑞 ∈ [0, 1] and 𝐴 = 1
2 + 𝑞

𝑞+1 , the following inequalities hold

log
(
1
2
+ 𝑞

𝑞 + 1

)
≥ 𝑞

𝑞 + 1
− log(2) ≥ 𝑞

2
− log(2), (A.14)

log(𝐴𝑞) ≥ −
log(2)

4
. (A.15)

Proof. For (A.14), write the Maclaurin series of log(1 − 𝑦)

log
(
1
2
+ 𝑞

𝑞 + 1

)
= −

∞∑︁
𝑛=1

1
𝑛

(
1

𝑞 + 1
− 1

2

)𝑛
=

1
2
− 1
𝑞 + 1

−
∞∑︁
𝑛=2

1
𝑛

(
1

𝑞 + 1
− 1

2

)𝑛
≥ 1

2
− 1
𝑞 + 1

−
∞∑︁
𝑛=2

1
𝑛

(
1
2

)𝑛
=

1
2
− 1
𝑞 + 1

+ 1
2
− log(2)

=
𝑞

𝑞 + 1
− log(2)

≥ 𝑞

2
− log(2).
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For (A.15), observe that 𝐴 is concave increasing in 𝑞, and log(·) is concave increasing,

so log(𝐴) is concave increasing in 𝑞. One can also compute that log(𝐴) = log(1/2) at

𝑞 = 0 and it vanishes at 𝑞 = 1, so since log(𝐴) is now concave, we must have log(𝐴) ≥

(1 − 𝑞) log(1/2) for 𝑞 ∈ [0, 1]. This yields log(𝐴𝑞) = 𝑞 log(𝐴) ≥ 𝑞(1 − 𝑞) log(1/2), with the

right hand side being minimized at 𝑞 = 1/2 with a value of log(1/2)/4, as required. □

A.4 Plots for Numerical Experiments
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Figure A.2: Numerics for non-uniform sampling of schools.
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Figure A.3: Solutions to the multi-seat initial value problem for various values of 𝑑 and 𝑞.
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Appendix B: Additional Details for Chapter 2

B.1 Discussion on discrete versus continuous models

Traditionally, matching markets are assumed to be discrete [1, 129]. There has been

however, in recent years, an interest for models where one or both sides of the markets

are continuous [130, 27]. This is justified by the fact that, in many applications, markets

are large, hence predictions in continuous markets often translate with a good degree

of accuracy to discrete ones. Moreover, continuous markets are often analytically more

tractable than discrete ones (see, again, [130, 27]). Our case is no exception: the continu-

ous model allows us to deduce precise mathematical formulae, while we show through

experiments that those formulae are a good approximation to the discrete case. We also

provide additional experiments evaluating the robustness of our results under relaxation

of assumptions, such as that of a unique bias factor for all students in 𝐺2. We remark

that the goal of this study is not to provide a mechanism to admits students to schools,

for which the assumption of all rankings of schools as well as of students being the same

would be too simplistic. On the contrary, as we want to understand the impact of bias at

a macroscopic level, we believe our approximation to be meaningful and useful since as

in our model any reasonable mechanism would output the same assignment. Note that

in the classical discrete model, when schools and students have unique ranking, there is

only one stable assignment, which is also Pareto-optimal for students. A similar state-

ment holds for the appropriate translations of those concepts to our model.
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B.2 Proof of Lemma 25

Proof. Assume 𝑇 is not of the form {𝜃 ∈ Θ : 𝑍 (𝜃) ≥ 𝛿} or {𝜃 ∈ Θ : 𝑍 (𝜃) > 𝛿} for some 𝛿 and

let 𝑈 be a connected and inclusionwise maximal subset of 𝑇 that is bounded. Take the

smallest number 𝛿1 ∈ [1,∞) so that 𝑍 (𝜃) ≤ 𝛿1 for all 𝜃 ∈ 𝑈. Let 𝜃 ∈ 𝜃 such that 𝑍 (𝜃) = 𝛿1.

Assume first that 𝜃 ∈ 𝑈. Then, for each 𝜖1 > 0, there exists 𝜖 ∈ (0, 𝜖1] such that

𝑍−1(𝛿1 + 𝜖) ∉ 𝑇 . Since 𝛽 < 1 and by continuity of 𝑍 (·), there exists 𝜖2 > 0 such that

𝛽(𝛿1 + 𝜖) < 𝛿1 for all 𝜖 < 𝜖2. We can then take an appropriate 𝑥 ∈ [𝛿1, 𝛿1 + 𝜖2] \𝑇 and 𝑥′ = 𝛿1

to show that 𝑇 is not incentive compatible.

Next assume 𝜃 ∉ 𝑈. In particular, we have 𝜃 ∉ 𝑇 . Similarly to the case above, we can

find 𝜖 > 0 such that 𝑥′ = 𝛿1 − 𝜖 satisfies 𝑍−1(𝑥′) ∈ 𝑈 ⊆ 𝑇 and 𝛽𝛿1 < 𝑥
′. Setting 𝑥 = 𝛿1, we

deduce that 𝑇 is not incentive compatible. □

B.3 Impact on Schools

This appendix explores the schools’ perspective: the impact of bias on utility (quality

of accepted students) and diversity for schools, as well as school-driven interventions such

as interviews. In the notation of the two-group model in Section 2.2, we define the utility

𝑢𝛾 (𝑠) of a school 𝑠 under matching 𝛾 ∈ {𝜇, 𝜇̂}, as

𝑢𝛾 (𝑠) :=
∫
𝜃∈𝛾−1 (𝑠)∩𝐺1

𝑍 (𝜃)𝑑𝐹1(𝑍̂ (𝜃)) +
∫
𝜃∈𝛾−1 (𝑠)∩𝐺2

𝑍 (𝜃)𝑑𝐹2(𝑍̂ (𝜃)). (B.1)

That is, the utility of a school is the average true potential of admitted students. Con-

tinuing from Example 20, let 𝑠𝑀 (resp. 𝑠𝐿) be the school Maya (resp. Lisa) is assigned to

in the biased setting. Following Proposition 109, the utilities of 𝑠𝑀 , 𝑠𝐿 in the unbiased

setting are 𝑢𝜇 (𝑠𝑀) = 1.283 and 𝑢𝜇 (𝑠𝐿) = 1.324, while in the biased setting, they are

𝑢 𝜇̂ (𝑠𝑀) = 1.280 and 𝑢 𝜇̂ (𝑠𝐿) = 1.320. Hence, the change in the utilities of the two school

between the two settings is negligible. We develop the theory to validate these observa-

tions in this appendix.
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We discuss first the impact of bias on the average true potential of students accepted

by a school. Let 𝑠 ∈ [0, 1] denote the school that is ranked in the 𝑠 × 100% position

among the continuous range of schools. As the next proposition shows, the impact on

the utilities of schools is negligible for all schools other than the lowest ranked schools.

This is because for each school, although the average potential of assigned 𝐺1 students is

lower than it should be, its assigned 𝐺2 students have much higher true potentials. And

thus, the toll on the utility due to unqualified 𝐺1 students is partially canceled out by the

overqualified 𝐺2 students and the net effect is minimal. On the other hand, some lower

ranked schools that only admit 𝐺2 students fare better in the biased setting (since they

admit over-qualified 𝐺2 candidates).

Proposition 109. For school 𝑠, its utility under the unbiased (resp. biased) models are respectively

𝑢𝜇 (𝑠) = 𝑠−
1
𝛼 and 𝑢 𝜇̂ (𝑠) =


1 − 𝑝 + 𝑝𝛽𝛼

1 − 𝑝 + 𝑝𝛽𝛼+1

(
𝑠

1 − 𝑝 + 𝑝𝛽𝛼

)− 1
𝛼

if 𝑠 ≤ 1 − 𝑝 + 𝑝𝛽𝛼,(
𝑠 − (1 − 𝑝)

𝑝

)− 1
𝛼

if 𝑠 > 1 − 𝑝 + 𝑝𝛽𝛼 .

The key idea in the proof is to first compute the cutoffs at each school for each of the

two groups, that is, the minimum perceived potential needed for a student to be matched

to a given school. Once these are known, using Bayes’ rule, we deduce the minimum real

potential needed by students of each group to attend the school. From the latter, we can

immediately compute the average utility of each school.

Proof. In order for a student 𝜃 to be assigned to a school that is at least as good as 𝑠,

their perceived potential 𝑍̂ (𝜃) needs to be high enough to satisfy (1 − 𝑝)𝐹̄1(1 ∨ 𝑍̂ (𝜃)) +

𝑝𝐹̄2(𝑍̂ (𝜃)) ≤ 𝑠. That is, we need

𝑍̂ (𝜃) ≥ 𝑑 (𝑠) :=


(

𝑠

1 − 𝑝 + 𝑝𝛽𝛼

)− 1
𝛼

if 𝑠 ≤ 1 − 𝑝 + 𝑝𝛽𝛼,

𝛽

(
𝑠 − (1 − 𝑝)

𝑝

)− 1
𝛼

if 𝑠 > 1 − 𝑝 + 𝑝𝛽𝛼 .
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We call 𝑑 (𝑠) the cutoff for school 𝑠. With the cutoffs, we can compute the utilities of

schools. We start with the formula for 𝑢 𝜇̂ (𝑠). First note that by Bayes rule, the probability

that a given student with perceived potential 𝑍̂ (𝜃) ≥ 1 belongs to 𝐺1 is 1−𝑝
1−𝑝+𝑝𝛽𝛼+1 . Using

Equation (2.1), observe that the 𝐺2 student whose perceived potential is 1 (i.e., true po-

tential is 1
𝛽
) is matched to school 1 − 𝑝 + 𝑝𝛽𝛼. Thus, if 𝑠 ≥ 1 − 𝑝 + 𝑝𝛽𝛼, 𝑠 is only assigned

with 𝐺2 students. Therefore, when 𝑠 ≤ 1 − 𝑝 + 𝑝𝛽𝛼,

𝑢 𝜇̂ (𝑠) =
1 − 𝑝

1 − 𝑝 + 𝑝𝛽𝛼+1
𝑑 (𝑠) + 𝑝𝛽𝛼+1

1 − 𝑝 + 𝑝𝛽𝛼+1

𝑑 (𝑠)
𝛽

=
1 − 𝑝 + 𝑝𝛽𝛼

1 − 𝑝 + 𝑝𝛽𝛼+1

(
𝑠

1 − 𝑝 + 𝑝𝛽𝛼

)− 1
𝛼

.

And when 𝑠 > 1 − 𝑝 + 𝑝𝛽𝛼, we have

𝑢 𝜇̂ (𝑠) = 𝑑 (𝑠)/𝛽 =

(
𝑠 − (1 − 𝑝)

𝑝

)− 1
𝛼

.

One the other hand, when there is no bias against 𝐺2 students, we simply have 𝑢𝜇 (𝑠) =

𝑠−
1
𝛼 . □

As one readily observes from Proposition 109, the negative impact of bias on schools’

utility is negligible. Hence, from an operational perspective, it may be hard to convince

schools to autonomously put in place mechanisms to alleviate the effect of bias given the

limited impact on them.

Figure B.1: Proportion of 𝐺2 students in higher ranked schools decreases significantly in the biased setting.
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Let 𝑝𝑟 (𝑠) (resp. 𝑝𝑟 (𝑠)) be the proportion of𝐺2 students assigned to school 𝑠when there

is no bias (resp. there is bias) against 𝐺2 students. Since the distribution of potentials is

the same for both 𝐺1 and 𝐺2 students, it is immediate that 𝑝𝑟 (𝑠) = 𝑝 when there is no

bias.

Proposition 110. Without bias, we have 𝑝𝑟 (𝑠) = 𝑝. Under the biased setting, we have

𝑝𝑟 (𝑠) =


𝑝𝛽𝛼

1 − 𝑝 + 𝑝𝛽𝛼 if 𝑠 ≤ 1 − 𝑝 + 𝑝𝛽𝛼,

1 if 𝑠 > 1 − 𝑝 + 𝑝𝛽𝛼 .

Proof. The formula for 𝑝𝑟 (𝑠) follows from the analysis of utility of schools in Proposi-

tion 109. □

A visual comparison of 𝑝𝑟 (𝑠) and 𝑝𝑟 (𝑠) can be found in Figure B.1 for different values

of 𝛽 and 𝑝. In particular, we show that the proportion of 𝐺2 students in higher ranked

schools decreases significantly in the biased setting.

B.4 Proof of Theorem 23 and related facts

B.4.1 Technical discussion

The main idea of the proof is to first assume that the set 𝑇 forms a connected set

(i.e., a closed interval). Then, we can express 𝑚𝑚(𝜇𝑇 ) as a function of the endpoints of 𝑇

and work out the minimizing interval. We next drop the assumption that 𝑇 is connected

and show that the optimal set of students to debias remains the same. The analysis we

give is actually more general, and presents results under which vouchers improve the

mistreatment of students lexicographically. Interestingly, it also shows that, if vouchers are

not distributed carefully, one may actually worsen the most mistreated students.
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B.4.2 A more general approach

The analysis we give is actually leads to a more general statement than Theorem 23,

and has the goal of investigating conditions under which giving vouchers can improve

over the status quo. More formally, for bounded functions 𝑓 , 𝑔 : 𝐺2 → R, we write

𝑓 ≻ 𝑔 if we can partition 𝐺2 in two sets 𝑆, 𝑆′ (with possibly 𝑆′ = ∅) so that 𝑓 (𝜃) = 𝑔(𝜃)

for 𝜃 ∈ 𝑆′ and sup𝜃∈𝑆 𝑓 (𝜃) > sup𝜃∈𝑆 𝑔(𝜃). Note that ≻ is transitive and antisymmetric,

and can be interpreted as a continuous equivalent of the classical lexicographic ordering

for discrete vectors. In particular, if we let 𝑓 = 𝛾 − 𝜇 and 𝑔 = 𝛾′ − 𝜇 for matchings

𝛾, 𝛾′, then sup𝜃∈𝐺2
(𝛾 − 𝜇) (𝜃) > sup𝜃∈𝐺2

(𝛾′ − 𝜇) (𝜃) implies 𝑓 ≻ 𝑔 (taking 𝑆 = 𝐺2). Now

suppose we debias student in 𝑇 = [𝑍1, 𝑍2] for some 𝑇 ∈ T (𝑐), and let 𝑓 := 𝜇̂ − 𝜇, 𝑔 :=

𝜇𝑇 − 𝜇. Table B.1 provides conditions under which 𝑓 ≻ 𝑔 (i.e., intervention reduces the

maximum mistreated experienced by 𝐺2 students). In particular it shows that for certain

combinations of the data and the choice of 𝑍1 and 𝑍2, giving vouchers may actually lead

to worse (according to ≻) matchings. One can check that under assumption 𝑝 < 1 − 𝛽𝛼,

all conditions given in Table B.1 for different cases are satisfied.

CASE subcase condition for 𝜇̂ − 𝜇 ≻ 𝜇𝑇 − 𝜇

I. 𝛽𝑍2 ≥ 𝑍1
1. 1 ≤ 𝛽𝑍1 𝑝 < 1 −

(
𝑍1

𝑍2

)𝛼
2. 𝛽𝑍1 ≤ 1 ≤ 𝛽𝑍2 𝑝 < 1 −

(
1
𝛽𝑍2

)𝛼
II. 𝛽𝑍2 ≤ 𝑍1

1. 1 ≤ 𝛽𝑍1 𝑝 < 1 − 𝛽𝛼

2. 𝛽𝑍1 ≤ 1 ≤ 𝛽𝑍2 𝑝

((
1
𝑍1

)𝛼
−

(
1
𝑍2

)𝛼)
< (1 − 𝑝)

(
1
𝛽𝛼

− 1
) (
𝛽𝛼 −

(
1
𝑍2

)𝛼)
3. 𝛽𝑍2 ≤ 1 Not possible: 𝑔 ≻ 𝑓 in this case.

Table B.1: Sufficient conditions for 𝜇̂ − 𝜇 ≻ 𝜇𝑇 − 𝜇 by cases, where 𝑇 = [𝑍1, 𝑍2]. Each strict inequality, when
replaced with its non-strict counterpart, gives instead a necessary condition.

In this first part of the proof, we proceed as follows. First, we assume that 𝑇 ∈ T 𝑐 (𝑐).

That is, we assume 𝑇 = [𝑍1, 𝑍2] with extreme points 𝑍1 < 𝑍2. For simplicity, we let 𝜇̃
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denote 𝜇𝑇 . We then compare 𝑓 := 𝜇̂ − 𝜇 and 𝑔 := 𝜇̃ − 𝜇 using the relation ≻.

Note that, if we let 𝑆 be the set of students in 𝐺2 with potential in [𝑍1, 𝑍2/𝛽] and

𝑆′ := 𝐺2 \ 𝑆, we have 𝑓 (𝜃) = 𝑔(𝜃) for 𝜃 ∈ 𝑆′. That is, only 𝐺2 students whose true potential

lies in interval [𝑍1, 𝑍2/𝛽] are affected by the intervention. Hence, sup𝜃∈𝑆 𝑓 > sup𝜃∈𝑆 𝑔 if

and only if 𝑓 ≻ 𝑔. We divide the analysis in the following two major cases: the first case

is when 𝛽𝑍2 ≥ 𝑍1 (i.e., when [𝛽𝑍1, 𝛽𝑍2] and [𝑍1, 𝑍2] overlap) and the second case is when

𝛽𝑍2 ≤ 𝑍1. For both major cases, we will consider two subcases: 𝛽𝑍1 ≥ 1, 𝛽𝑍1 ≤ 1 ≤ 𝛽𝑍2.

And for the second major case, we also need to consider the subcase where 𝛽𝑍2 ≤ 1. The

results for all cases are summarized in the Table B.1.

Observation 111. If there is an interval [𝑍1, 𝑍2] that is of either case I.2 or case II.2 such that

𝜇[𝑍1,𝑍2] − 𝜇 ≺ 𝜇̂ − 𝜇 with 𝑆 = 𝐺2, then the optimal range must be of case I.2 or case II.2. This is

because for any interval [𝑍′1, 𝑍
′
2] that is not of case I.2 or case II.2, we have

sup
𝜃∈Θ

{(𝜇[𝑍 ′
1,𝑍

′
2] − 𝜇)} ≥ sup

𝜃∈Θ
{𝜇̂ − 𝜇} > sup

𝜃∈Θ
{𝜇[𝑍1,𝑍2] − 𝜇}.

As it turns out, indeed, the optimal range will be either case I.2 or case II.2, and exactly

which one the optimal solution is depends on the amount of resources, i.e., the value of 𝑐.

We now show the first half of Theorem 23, i.e., we assume 𝑐 ≥ (1−𝑝) (1−𝛽𝛼)
1−𝑝+1−𝛽𝛼 . The proof

steps are outlined below. Each step can be shown by simple algebra and is thus omitted.

(1). We first show that [𝑍∗
1 , 𝑍

∗
2] is of case I.2. That is, we show 𝛽𝑍∗

2 ≥ 𝑍∗
1 and 𝑍∗

1 ≤ 1
𝛽
≤ 𝑍∗

2 .

By writing out the formula for 𝜇[𝑍1,𝑍2] − 𝜇, one can see that for an interval [𝑍1, 𝑍2] of

case I.2 or case II.2, 𝜇[𝑍1,𝑍2] − 𝜇 increases on [1, 𝑍1], deceases on [𝑍2,∞], and it is non-

positive on [𝑍1, 𝑍2]. This means sup𝜃∈Θ{𝜇[𝑍1,𝑍2] − 𝜇} is achieved either at 𝑍1 or 𝑍2.

(2). Next, we show that [𝑍∗
1 , 𝑍

∗
2] is an exact range, that is, ( 1

𝑍∗
1
)𝛼 − ( 1

𝑍∗
2
)𝛼 = 𝑐. Moreover,

let 𝜃∗1 and 𝜃∗2 be the 𝐺2 students whose potentials are 𝑍∗
1 and 𝑍∗

2 respectively. Then,

(𝜇[𝑍1,𝑍2] − 𝜇) (𝜃∗1) = (𝜇[𝑍1,𝑍2] − 𝜇) (𝜃∗2) and thus, they are both equal to sup𝜃∈Θ{𝜇[𝑍1,𝑍2] −

𝜇}.
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Together with the assumption 𝑝 < 1 − 𝛽𝛼, we have sup𝜃∈Θ{𝜇[𝑍∗
1 ,𝑍

∗
2] − 𝜇} ≤ sup𝜃∈Θ{𝜇̂ −

𝜇}. Thus, due to Observation 111, it is sufficient to compare [𝑍∗
1 , 𝑍

∗
2] only with intervals

[𝑍1, 𝑍2] of case I.2 and case II.2 (i.e, when 𝛽𝑍1 ≤ 1 ≤ 𝛽𝑍2). Since [𝑍∗
1 , 𝑍

∗
2] is exact, we must

either have 𝑍1 > 𝑍
∗
1 or 𝑍2 < 𝑍

∗
2 .

(3). Lastly, we show that for any other feasible range [𝑍1, 𝑍2] of case I.2 or case II.2, we

must have sup𝜃∈Θ{𝜇[𝑍1,𝑍2]−𝜇} > sup𝜃∈Θ{𝜇[𝑍∗
1 ,𝑍

∗
2]−𝜇}. Let 𝜃1 and 𝜃2 be the𝐺2 students

whose potentials are 𝑍1 and 𝑍2. It suffices to show

i). if 𝑍1 > 𝑍
∗
1 , then (𝜇[𝑍1,𝑍2] − 𝜇) (𝜃1) > (𝜇[𝑍∗

1 ,𝑍
∗
2] − 𝜇) (𝜃

∗
1);

ii). if 𝑍2 < 𝑍
∗
2 , then (𝜇[𝑍1,𝑍2] − 𝜇) (𝜃2) > (𝜇[𝑍∗

1 ,𝑍
∗
2] − 𝜇) (𝜃

∗
2).

For the second half of the theorem, we will follow similar steps and reasoning, out-

lined below.

(1). We first show that [𝑍∗
1 , 𝑍

∗
2] is of case II.2. That is to show 𝛽𝑍∗

2 ≤ 𝑍∗
1 and 𝑍∗

1 ≤ 1
𝛽
≤ 𝑍∗

2 .

(2). We check that [𝑍∗
1 , 𝑍

∗
2] is an exact range. And let 𝜃∗1 and 𝜃∗2 be the 𝐺2 students

whose potentials are 𝑍∗
1 and 𝑍∗

2 respectively, we want to show that (𝜇[𝑍1,𝑍2]−𝜇) (𝜃∗1) =

(𝜇[𝑍1,𝑍2] − 𝜇) (𝜃∗2), which implies that both are sup𝜃∈Θ{𝜇[𝑍∗
1 ,𝑍

∗
2] − 𝜇}.

(3). We show 𝜇[𝑍∗
1 ,𝑍

∗
2] − 𝜇 ≺ 𝜇̂ − 𝜇, which, unlike in the previous case, is not immediate

from the assumption 𝑝 < 1 − 𝛽𝛼.

Again, due to Observation 111, it is sufficient to compare [𝑍∗
1 , 𝑍

∗
2] only with regions

[𝑍1, 𝑍2] of case I.2 and case II.2 (i.e, when 𝛽𝑍1 ≤ 1 ≤ 𝛽𝑍2).

(4). As before, we will show two cases, which is enough because [𝑍∗
1 , 𝑍

∗
2] is exact and

one of the two cases is bound to happen. Again, let 𝜃1 and 𝜃2 be the 𝐺2 students

whose potentials are 𝑍1 and 𝑍2 respectively. We want to show

i). if 𝑍1 > 𝑍
∗
1 , then (𝜇[𝑍1,𝑍2] − 𝜇) (𝜃1) > (𝜇[𝑍∗

1 ,𝑍
∗
2] − 𝜇) (𝜃

∗
1),
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ii). otherwise, we must have 𝑍2 < 𝑍
∗
2 , and then (𝜇[𝑍1,𝑍2] −𝜇) (𝜃2) > (𝜇[𝑍∗

1 ,𝑍
∗
2] −𝜇) (𝜃

∗
2).

Now let 𝑇∗ ∈ T (𝑐) be the optimal solution without the restriction that sets in T (𝑐) are

connected. We will show that 𝑇∗ differs from [𝑍∗
1 , 𝑍

∗
2] in a set of measure zero. First, in

order to have sup(𝜇𝑇∗ − 𝜇) ≤ sup(𝜇[𝑍∗
1 ,𝑍

∗
2] − 𝜇) =: 𝑠, in 𝑇∗, we must debias all students 𝜃

whose mistreatment ( 𝜇̂ − 𝜇) (𝜃) is greater than 𝑠. That is, we must have 𝑇∗
1 := [𝑍∗

1 , 𝑍
(1)] ⊆

𝑇∗, where 𝑍 (1) := 𝑍 (𝜃 (1)) ≥ 1/𝛽 and ( 𝜇̂ − 𝜇) (𝜃 (1)) = 𝑠. There is a 𝐺2 student 𝜃 (2) such that

𝑍 (2) := 𝑍 (𝜃 (2)) > 𝑍 (1) and (𝜇𝑇∗
1
− 𝜇) (𝜃 (2)) = 𝑠. We have moreover that (𝜇𝑇∗

1
− 𝜇) (𝜃) ≥ 𝑠

for all 𝜃 ∈ 𝐺2 such that 𝑍 (𝜃) ∈ [𝑍 (1) , 𝑍 (2)]. Thus, we must also have [𝑍 (1) , 𝑍 (2)] ∈ 𝑇∗. Let

𝑇∗
2 := [𝑍∗

1 , 𝑍
(2)]. We can repeat the argument and observe that there is a 𝐺2 student 𝜃 (3)

such that 𝑍 (3) := 𝑍 (𝜃 (3)) > 𝑍 (2) and (𝜇𝑇∗
2
− 𝜇) (𝜃) ≥ 𝑠 for 𝜃 ∈ 𝐺2 such that 𝑍 (𝜃) ∈ [𝑍 (2) , 𝑍 (3)]

and conclude that 𝑇∗
3 := [𝑍∗

1 , 𝑍
(3)] must be contained in 𝑇∗. Continuously applying the

same argument, we have lim𝑛→∞ 𝑍 (𝜃 (𝑛)) = 𝑍∗
2 and thus the claim follows.

B.5 Proof of Theorem 24 and related facts

Assume 𝑇 = [𝑍1, 𝑍2] is the range of true potentials of 𝐺2 students we want to debias.

For simplicity, as in previous sections, let 𝜇̃ denote 𝜇𝑇 . In order to obtain the minimizer

of 𝜎( 𝜇̃ − 𝜇), first, we want to compute 𝜎( 𝜇̃ − 𝜇) for each of the cases in Table B.1.

For 1 ≤ 𝑡1 ≤ 𝑡2 ∈ R ∪ {+∞}, let 𝜎𝑡2𝑡1 ( 𝑓 ) :=
∫ 𝑡2

𝑡1
max( 𝑓 (𝑡), 0)𝑑𝐹1(𝑡) for any function 𝑓 :

[1,∞] → [0, 1]. When 𝑡1 = 1 and 𝑡2 = ∞, we simply write 𝜎( 𝑓 ), which is consistent

with previous notations. Note that with 𝜎( 𝜇̂ − 𝜇) as a reference, it actually suffices to

compute only 𝜎
𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇), because minimizing 𝜎( 𝜇̃ − 𝜇) is equivalent to maximizing

𝜎
𝑍2/𝛽
𝑍1

( 𝜇̂−𝜇)−𝜎𝑍2/𝛽
𝑍1

( 𝜇̃−𝜇) since ( 𝜇̂−𝜇) (𝜃) = ( 𝜇̃−𝜇) (𝜃) for all 𝜃 ∈ 𝐺2 with 𝑍 (𝜃) ∉ [𝑍1, 𝑍2/𝛽].

For each case, we give an explicit formula for 𝜎𝑍2/𝛽
𝑍1

( 𝜇̂−𝜇)−𝜎𝑍2/𝛽
𝑍1

( 𝜇̃−𝜇). These formulae

can be computed via simply integration, and are thus omitted. In addition, we analyze

how this value changes (increase or decrease) with respect to 𝑍1 and 𝑍2.
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CASE I – Subcase 1. After integrating, we have

𝜎
𝑍2/𝛽
𝑍1

( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇) =
(1 − 𝑝)

(
1
𝛽𝛼

− 1
)

2

(
1
𝑍1

)2𝛼

+
𝑝 − 𝑝𝛽𝛼 − 1

𝛽𝛼
+ 1

2

(
1
𝑍2

)2𝛼

.

Now, to analyze how this quantity changes with 𝑍1 and 𝑍2, we first simplify some

of the terms, which will also be used in later sections. Let 𝑥 = ( 1
𝑍2
)𝛼 ∈ [0, 1] and let

( 1
𝑍1
)𝛼 = 𝑐 + 𝑥 ∈ [0, 1] for some 𝑐 ≤ 𝑐. Also, let 𝑔(𝑥, 𝑐) := 𝜎𝑍2/𝛽

𝑍1
( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽

𝑍1
( 𝜇̃ − 𝜇). Then,

𝑔(𝑥, 𝑐) =
(1 − 𝑝)

(
1
𝛽𝛼

− 1
)

2
(𝑐 + 𝑥)2 +

𝑝 − 𝑝𝛽𝛼 − 1
𝛽𝛼

+ 1

2
𝑥2.

First order conditions (FOC) show that 𝑔(𝑥, 𝑐) increases as 𝑥 increases (or equivalently, as

𝑍2 decreases) and as 𝑐 increases (meaning that the constraint ( 1
𝑍1
)𝛼−( 1

𝑍2
)𝛼 ≤ 𝑐 is effectively

( 1
𝑍1
)𝛼 − ( 1

𝑍2
)𝛼 = 𝑐).

CASE I – Subcase 2. In this case, we have

𝜎
𝑍2/𝛽
𝑍1

( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇) = −1
2
(1 − 𝑝)𝛽𝛼 + (1 − 𝑝)

((
1
𝑍1

)𝛼
− 1

2

(
1
𝑍1

)2𝛼
)

+
𝑝 − 𝑝𝛽𝛼 − 1

𝛽𝛼
+ 1

2

(
1
𝑍2

)2𝛼

.

Now, for the analysis, similarly, write

𝑔(𝑥, 𝑐) = const + (1 − 𝑝)
(
(𝑐 + 𝑥) − 1

2
(𝑐 + 𝑥)2

)
+
𝑝 − 𝑝𝛽𝛼 − 1

𝛽𝛼
+ 1

2
𝑥2.

Then, FOC shows that 𝑔(𝑥, 𝑐) is an increasing function w.r.t. 𝑐, and it is an increasing

function w.r.t. 𝑥 on [0, ℎI(𝑐)] and is a decreasing function on [ℎI(𝑐), 1], where ℎI(𝑐) =

(1−𝑝) (1−𝑐)
𝑝𝛽𝛼+ 1

𝛽𝛼
−2𝑝

.
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CASE II – Subcase 1. In this case, 𝜎𝑍2/𝛽
𝑍1

( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇) equals to

(
1
𝑍1

)2𝛼 ©­­«
(1 − 𝑝)

(
1
𝛽𝛼 − 1

)
+ 𝑝𝛽𝛼

2

ª®®¬ −
(

1
𝑍2

)2𝛼 ©­­«
(1 − 𝑝)

(
1
𝛽𝛼 − 1

)
+ 𝑝𝛽𝛼

2

ª®®¬ + 𝑝
(

1
𝑍2

)2𝛼

− 𝑝
(

1
𝑍1

)𝛼 (
1
𝑍2

)𝛼
.

Now, for the analysis, let 𝐴 = [(1 − 𝑝) ( 1
𝛽𝛼

− 1) + 𝑝𝛽𝛼]/2 ≥ 0. Then, 𝑔(𝑥, 𝑐) = 𝐴(𝑐 + 𝑥)2 −

𝐴𝑥2 + 𝑝𝑥2 − 𝑝(𝑐 + 𝑥) (𝑥). Checking the FOCs, we have that 𝑔(𝑥, 𝑐) is an increasing function

w.r.t. 𝑐 and w.r.t. 𝑥.

CASE II – Subcase 2. We have

𝜎
𝑍2/𝛽
𝑍1

( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇) = − 1
2
(1 − 𝑝)𝛽𝛼 +

(
1
𝑍1

)2𝛼 (
−(1 − 𝑝) + 𝑝𝛽𝛼

2

)
+ (1 − 𝑝)

(
1
𝑍1

)𝛼
−

(
1
𝑍2

)2𝛼 ( (1 − 𝑝)
(

1
𝛽𝛼 − 1

)
+ 𝑝𝛽𝛼

2

)
+ 𝑝

(
1
𝑍2

)2𝛼

− 𝑝
(

1
𝑍1

)𝛼 (
1
𝑍2

)𝛼
.

For the analysis, again let 𝐴 = [(1−𝑝) ( 1
𝛽𝛼
−1)+𝑝𝛽𝛼]/2 ≥ 0 and 𝐵 = [−(1−𝑝)+𝑝𝛽𝛼]/2 < 0.

Then,

𝑔(𝑥, 𝑐) = const + 𝐵(𝑐 + 𝑥)2 + (1 − 𝑝) (𝑐 + 𝑥) − 𝐴𝑥2 + 𝑝𝑥2 − 𝑝(𝑐 + 𝑥) (𝑥),

and for 𝑐, it is an increasing function; and for 𝑥, it is an increasing function on [0, ℎII(𝑐)]

and is a decreasing function on [ℎII(𝑐), 1], where

ℎII(𝑐) =
(𝑝𝛽𝛼 − 1)𝑐 + (1 − 𝑝)

(1 − 𝑝) 1
𝛽𝛼

.

CASE II – Subcase 3. Lastly, we have that 𝜎𝑍2/𝛽
𝑍1

( 𝜇̂ − 𝜇) − 𝜎𝑍2/𝛽
𝑍1

( 𝜇̃ − 𝜇) equals to

(
1
𝑍1

)2𝛼

𝐵 + (1 − 𝑝)
(

1
𝑍1

)𝛼
−

(
1
𝑍2

)2𝛼

𝐵 − (1 − 𝑝)
(

1
𝑍2

)𝛼
+ 𝑝

(
1
𝑍2

)2𝛼

− 𝑝
(

1
𝑍1

)𝛼 (
1
𝑍2

)𝛼
.

For the analysis, write 𝑔(𝑥, 𝑐) = 𝐵(𝑐+𝑥)2 + (1− 𝑝) (𝑐+𝑥) −𝐵𝑥2 − (1− 𝑝)𝑥 + 𝑝𝑥2 − 𝑝(𝑐+𝑥)𝑥.

𝑔(𝑥, 𝑐) is a decreasing function in 𝑥. The sign of 𝜕𝑔(𝑥,𝑐)
𝜕𝑐

is actually not clear in this subcase.

But for the purpose of finding the minimizer of 𝜎( 𝜇̃− 𝜇), this is not important because for
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a fixed value of 𝑐, 𝑔(𝑥, 𝑐) achieves its maximum when 𝑥 is of the value such that [𝑍1, 𝑍2]

is of subcase 2, of either case I or case II.

Not that for a fixed value of 𝑐, as 𝑍1 gets larger (or equivalently as 𝑍2 gets larger, or

as 𝑥 := ( 1
𝑍2
)𝛼 gets smaller), the range [𝑍1, 𝑍2] goes from case II to case I. In particular, for

each value of 𝑐, such transition happens exactly when 𝛽𝑍2 = 𝑍1. That is, when

𝑐 =

(
1
𝛽𝛼

− 1
) (

1
𝑍2

)𝛼
⇔

(
1
𝑍2

)𝛼
=

𝑐𝛽𝛼

1 − 𝛽𝛼 .

With simple algebra, one can easily check that

𝑐 =
(1 − 𝑝) (1 − 𝛽𝛼)

2 − 𝑝 − 𝛽𝛼 − 𝑝𝛽𝛼 + 𝑝𝛽2𝛼 ⇒ ℎI(𝑐) = ℎII(𝑐) =
𝑐𝛽𝛼

1 − 𝛽𝛼 .

Therefore, when

𝑐 ≥ (1 − 𝑝) (1 − 𝛽𝛼)
2 − 𝑝 − 𝛽𝛼 − 𝑝𝛽𝛼 + 𝑝𝛽2𝛼 ,

both ℎI(𝑐) and ℎII(𝑐) are no more than
𝑐𝛽𝛼

1 − 𝛽𝛼 . Thus, the maximum value of 𝜎( 𝜇̂ − 𝜇) −

𝜎( 𝜇̃ − 𝜇) is achieved when 𝑥 = ℎI(𝑐); and when 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)
2−𝑝−𝛽𝛼−𝑝𝛽𝛼+𝑝𝛽2𝛼 , both ℎI(𝑐) and ℎII(𝑐)

are no less than
𝑐𝛽𝛼

1 − 𝛽𝛼 . Thus, the maximum value of 𝜎( 𝜇̂− 𝜇) −𝜎( 𝜇̃− 𝜇) is achieved when

𝑥 = ℎII(𝑐).

B.6 Proofs from Section 2.5.1

B.6.1 Auxiliary results for Section 2.5.1

Recall that, in this section, we consider the generalization of the model from Section 2.2

where students’ true potential follow a generic continuous, integrable cdf 𝐹. Moreover,

we write [𝑥]+ := max(0, 𝑥) for a number or a function 𝑥. Recall that, similarly to Sec-

tion 2.5.1, we abuse notation and identify a student 𝜃 with their potential 𝑍 (𝜃).
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Budget Multiplicative Additive Difference
𝑐 PAUC MM Difference PAUC MM Difference PAUC MM

0.1 44.4% 45.2% 0.9% 45.4% 46.1% 0.7% 1.1% 0.9%
0.2 37.6% 39.3% 1.7% 39.7% 41.1% 1.4% 2.1% 1.8%
0.3 30.8% 33.3% 2.5% 34.1% 35.9% 1.8% 3.3% 2.6%
0.4 26.4% 28.5% 2.0% 30.2% 31.8% 1.6% 3.7% 3.3%
0.5 22.0% 23.7% 1.7% 26.0% 27.4% 1.4% 4.0% 3.7%
0.6 17.6% 19.0% 1.4% 21.6% 22.8% 1.2% 4.0% 3.9%
0.7 13.2% 14.2% 1.0% 17.0% 18.0% 0.9% 3.8% 3.7%
0.8 8.8% 9.5% 0.7% 12.1% 12.7% 0.7% 3.3% 3.3%

Table B.2: Proportion of disadvantaged students above theoretically optimal debiasing ranges under multi-
plicative/additive models and PAUC/maximum mistreatment aggregate mistreatment measures for 𝛼 = 3
and 𝑝 = 1/4, with 𝛽 = 0.8 for multiplicative models and 𝛾 = 0.252 for additive. For instance, the first value,
44.4% indicates that under budget 𝑐 = 0.1 and the multiplicative model, the top-44.4% to 54.4% of students
were debiased.

Lemma 112. Let 𝜌 be an RVP. Under any continuous distribution of potentials 𝐹, we have

𝜇𝜌 (𝜃) = 𝜌(𝜃)
(
(1 − 𝑝)

∫ ∞

𝜃

𝑑𝐹 + 𝑝
[∫ 𝜃/𝛽

𝜃

𝜌 𝑑𝐹 +
∫ ∞

𝜃/𝛽
𝑑𝐹

] )
+ (1 − 𝜌(𝜃))·(

(1 − 𝑝)
∫ ∞

𝛽𝜃

𝑑𝐹 + 𝑝
[∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹 +
∫ ∞

𝜃

𝑑𝐹

] )
, (B.2)

𝑚𝜌 (𝜃) = [0, (1 − 𝜌(𝜃)) (1 − 𝑝)
∫ 𝜃

𝛽𝜃

𝑑𝐹 + 𝑝
[
(1 − 𝜌(𝜃))

∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹 − 𝜌(𝜃)
∫ 𝜃/𝛽

𝜃

(1 − 𝜌) 𝑑𝐹
]
]+.

(B.3)

Proof. Suppose a student appears to have potential 𝜏, possibly after having been debiased.

Then under 𝜇𝜌, they will be matched to school 𝑠(𝜏) given by

𝑠(𝜏) = (1 − 𝑝)
∫ ∞

𝜏

𝑑𝐹 + 𝑝
[∫ 𝜏/𝛽

𝜏

𝜌 𝑑𝐹 +
∫ ∞

𝜏/𝛽
𝑑𝐹

]
,

that is, they will appear after all non-disadvantaged students with true potential exceed-

ing 𝜏; those disadvantaged students with potential exceeding 𝜏/𝛽; and those disadvan-

taged students who receive a voucher and have potential in the interval (𝜏, 𝜏/𝛽).

A student with true potential 𝜃 now receives a voucher with probability 𝜌(𝜃), so by
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the law of total expectation, we have 𝜇𝜌 (𝜃) = 𝜌(𝜃)𝑠(𝜃) + (1 − 𝜌(𝜃))𝑠(𝛽𝜃), which is exactly

(B.2). (B.3) follows from (B.2) and the definitions of displacement and 𝜇(𝜃). □

We next report more useful expressions for 𝜇𝜌 and 𝜇′𝜌.

Proposition 113. Let 𝜌 be an RVP. For all 𝜃 ∈ Θ, we have

𝜇𝜌 (𝜃) = −𝜌(𝜃)
(
(1 − 𝑝)

∫ 𝜃

𝛽𝜃

𝑑𝐹 + 𝑝
[∫ 𝜃/𝛽

𝜃

(1 − 𝜌) 𝑑𝐹 +
∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹

] )
+

(
(1 − 𝑝)

∫ ∞

𝛽𝜃

𝑑𝐹 + 𝑝
[∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹 +
∫ ∞

𝜃

𝑑𝐹

] )
. (B.4)

Moreover, if 𝜇𝜌 is differentiable at 𝜃, we have

𝜇′𝜌 (𝜃) = − 𝑓 (𝜃) − 𝜌′(𝜃)
[
𝑝

∫ 𝜃/𝛽

𝜃

(1 − 𝜌) 𝑑𝐹 + (1 − 𝑝)
∫ 𝜃

𝛽𝜃

𝑑𝐹 + 𝑝
∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹

]
− 𝑝𝜌(𝜃)

[
1
𝛽
(1 − 𝜌(𝜃/𝛽)) 𝑓 (𝜃/𝛽) − (1 − 𝜌(𝜃)) 𝑓 (𝜃)

]
+ (1 − 𝜌(𝜃)) [(1 − 𝑝) ( 𝑓 (𝜃) − 𝛽 𝑓 (𝛽𝜃)) + 𝑝( 𝑓 (𝜃)𝜌(𝜃) − 𝛽 𝑓 (𝛽𝜃)𝜌(𝛽𝜃))] . (B.5)

Proof. (B.4) follows by simple rearrangement of (B.2), and (B.5) follows by standard me-

chanics of derivative computation. □

Definition 114. The RVP that assigns no vouchers, denoted 𝜌0 is defined by 𝜌0(𝜃) := 0 for all

𝜃 ∈ [1,∞). Note that 𝜇𝜌0 (𝜃) = (1 − 𝑝)
∫ ∞
𝛽𝜃
𝑑𝐹 + 𝑝

∫ ∞
𝜃
𝑑𝐹 and 𝑚𝜌0 (𝜃) = 𝑚 𝜇̂ (𝜃) = (1 − 𝑝)

∫ 𝜃

𝛽𝜃
𝑑𝐹.

B.6.2 Necessary and sufficient conditions for incentive compatibility

In this section we develop necessary and sufficient conditions for incentive compati-

bility through the concept of well-behavedness and prove an important technical lemma.

Definition 115 (Well-behaved RVP). We call an RVP 𝜌 well-behaved if it is everywhere

continuously differentiable except for a set of isolated points where it has non-negative, right-

continuous jump discontinuities.
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Lemma 116 (Necessary and sufficient conditions for incentive compatibility). Let 𝜌 be a

well-behaved RVP and 𝐹 be an arbitrary continuous distribution of potentials. 𝜌 is incentive

compatible with respect to 𝐹 if and only if, for all 𝜃 such that 𝜌 is continuously differentiable at 𝜃,

we have 𝜌′(𝜃) ≥ 0 or 𝜇′𝜌 (𝜃) ≤ 0.

Proof. Recall that 𝜌 is incentive compatible if 𝜇𝜌 is everywhere non-increasing. Observe

from (B.4) in Proposition 113 that 𝜇𝜌 is continuous at 𝜃 if and only if 𝜌 is continuous at

𝜃. On the other hand, if 𝜇𝜌 is not continuous at 𝜃 then it must have a negative jump-

discontinuity caused by a positive jump-discontinuity of 𝜌 (since all other terms of (B.4)

are positive). Further note that if 𝜇𝜌 is not continuously differentiable at 𝜃 ∈ Θ, then

𝜌 is not continuously differentiable at 𝜃, 𝛽𝜃 or 𝜃/𝛽; so the set of points where 𝜇𝜌 is not

continuously differentiable also forms an isolated set.

Let 𝜃 ∈ Θ where 𝜇𝜌 is continuously differentiable. Then, 𝜇𝜌 is non-increasing if and

only if 𝜇′𝜌 (𝜃) ≤ 0. From (B.5), one can see that 𝜇′𝜌 (𝜃) ≤ 0 if 𝜌′(𝜃) ≥ 0.

We have established that 𝜇𝜌 is continuous at all but an isolated set of negative jump-

discontinuities, and that 𝜇𝜌 is continuously differentiable and non-increasing at all but an

isolated set of points. 𝜇𝜌 is therefore everywhere non-increasing, as required. □

Lemma 117. Suppose 𝜌 is a well-behaved RVP such that for all 𝜃 where 𝜌 is continuously dif-

ferentiable, we have 𝜌′(𝜃) ≥ −𝜙(𝜃), with 𝜙(𝜃) := 𝛼(1−𝑝)
𝜃 [𝑝(1−𝛽𝛼)+(1−𝑝) (𝛽−𝛼−1)] . Then, 𝜌 is incentive

compatible.

Proof. By Lemma 116, it suffices to show that 𝜇′𝜌 (𝜃) ≤ 0 for 𝜃 such that 𝜌′(𝜃) exists and is

continuous, and 𝜌′(𝜃) < 0. Now define

L = 𝑝

∫ 𝜃/𝛽

𝜃

(1−𝜌) 𝑑𝐹+(1−𝑝)
∫ 𝜃

𝛽𝜃

𝑑𝐹+𝑝
∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹 and𝑊 = −𝜌(𝜃) (1−𝑝) 𝑓 (𝜃)−(1−𝜌(𝜃)) (1−𝑝)𝛽 𝑓 (𝛽𝜃),

and note that L ≥ 0, and 𝑊 ≤ 0. Simple calculations based on (B.5) in Proposition 113
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shows that 𝜇′𝜌 (𝜃) ≤ −𝜌′(𝜃)L +𝑊 . It is therefore enough to prove −𝜌′(𝜃) ≤ −𝑊
L . Compute

L ≤ 𝑝

∫ 𝜃/𝛽

𝜃

𝑑𝐹+(1−𝑝)
∫ 𝜃

𝛽𝜃

𝑑𝐹 ≤ 𝜃−𝛼 [𝑝(1 − 𝛽𝛼) + (1 − 𝑝) (𝛽−𝛼 − 1)] and −𝑊 ≥ (1−𝑝) min { 𝑓 (𝜃), 𝛽 𝑓 (𝛽𝜃)} = 𝛼(1 − 𝑝)
𝜃1+𝛼 .

This yields −𝑊
L ≥ 𝛼(1−𝑝)

𝜃 [𝑝(1−𝛽𝛼)+(1−𝑝) (𝛽−𝛼−1)] = 𝜙(𝜃).We have shown −𝑊
L ≥ 𝜙(𝜃), which com-

bined with the assumption that 𝜙(𝜃) ≥ −𝜌′(𝜃) completes the proof. □

B.6.3 Proof of Theorem 26: properties of PropMs

We next prove Lemmas 118, 119, and 122, which together constitute Theorem 26.

Lemma 118. The proportional-to-mistreatment RVP 𝜌𝑚 is 2𝑐𝛼
1−𝛽𝛼 -individually fair.

Proof. 𝜌𝑚 is everywhere continuous and continuously differentiable on Θ, except at 𝜃 =

1/𝛽. 𝜌𝑚 is therefore Lipschitz for a constant given by the supremum of the absolute value

of the derivative, which occurs at 𝜃 = 1 where 𝜌′𝑚 (𝜃) = 2𝑐𝛼
1−𝛽𝛼 . □

Lemma 119. The proportional-to-mistreatment RVP 𝜌𝑚 is incentive compatible for

𝑐 ≤ 1 − 𝑝
2 [𝑝(1 − 𝛽𝛼) + (1 − 𝑝) (𝛽−𝛼 − 1)] .

Proof. Applying Lemma 117, it suffices to show

−𝜌′𝑚 (𝜃) = 2𝛼𝑐𝛽−𝛼𝜃−𝛼−1 ≤ 𝜙(𝜃) = 𝛼(1 − 𝑝)
𝜃 [𝑝(1 − 𝛽𝛼) + (1 − 𝑝) (𝛽−𝛼 − 1)] . (B.6)

for 𝜃 ≥ 1/𝛽 (since 𝜌′𝑚 (𝜃) ≥ 0 for 𝜃 < 1/𝛽). Note that this is tightest when 𝜃 = 1/𝛽, which

gives the condition for 𝑐. □

Lemma 120. For the proportional-to-mistreatment RVP 𝜌𝑚, we have

sup
𝜃∈Θ

(1 − 𝜌𝑚 (𝜃))
∫ 𝜃

𝛽𝜃

𝑑𝐹 = (1 − 𝛽𝛼)𝜉 (𝑐), where 𝜉 (𝑐) :=


1 − 2𝑐, 𝑐 ≤ 1/4,

1
8𝑐 , 𝑐 > 1/4.
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Proof. With 𝐹 (𝑎, 𝑏) :=
∫ 𝑏

𝑎
𝑑𝐹, define 𝑞 := 2𝑐

1−𝛽𝛼 and 𝑦(𝜃) := 𝐹 (𝛽𝜃, 𝜃). Now write

(1 − 𝜌𝑚 (𝜃))
∫ 𝜃

𝛽𝜃

𝑑𝐹 =

(
1 − 2𝑐

1 − 𝛽𝛼 𝐹 (𝛽𝜃, 𝜃)
)
𝐹 (𝛽𝜃, 𝜃) = (1 − 𝑞𝑦(𝜃))𝑦(𝜃).

This is a quadratic in 𝑦 that increases from 𝑦 = 0 to its maximum at 𝑦 = 1/(2𝑞). Observe

that max𝜃 𝐹 (𝛽𝜃, 𝜃) = 1 − 𝛽𝛼 which is attained at 𝜃 = 1/𝛽. This means that if 𝑐 ≤ 1/4, then

𝑦(𝜃) = 𝐹 (𝛽𝜃, 𝜃) ≤ 1 − 𝛽𝛼 ≤ 1 − 𝛽𝛼
4𝑐

=
1

2𝑞
,

and the maximum of the quadratic over 𝑦 is realized at the maximum value of 𝑦. Thus,

sup
𝜃∈Θ,𝑐≤1/4

(1 − 𝑞𝑦(𝜃))𝑦(𝜃) =
(
1 − 2𝑐

1 − 𝛽𝛼 (1 − 𝛽𝛼)
)
(1 − 𝛽𝛼) = (1 − 𝛽𝛼) (1 − 2𝑐).

On the other hand if 𝑐 > 1/4, then this expression reaches its maximum when the quadratic

does, at 𝑦 = 1/(2𝑞), giving

sup
𝜃∈Θ,𝑐>1/4

(1 − 𝑞𝑦(𝜃))𝑦(𝜃) =
(
1 − 𝑞 1

2𝑞

)
1

2𝑞
=

(
1 − 1

2

)
1

2𝑞
=

1 − 𝛽𝛼
8𝑐

.

Combining the two completes the proof. □

Lemma 121. For the proportional-to-mistreament RVP, 𝜌𝑚, the maximum mistreament 𝑚𝑚𝜌𝑚

satisfies 𝑚𝑚𝜌𝑚 ≤ (1 − 𝑝(1 − 2𝑐)) (1 − 𝛽𝛼)𝜉 (𝑐), where 𝜉 (·) is defined as in Lemma 120.

Proof. Abbreviate 𝜌 = 𝜌𝑚. Apply 𝜌(𝜃) ≤ 𝜌(1/𝛽) to (B.3) and simplify to get

𝑚𝜌𝑚 (𝜃) ≤
[
(1 − 𝑝) (1 − 𝜌(𝜃))

∫ 𝜃

𝛽𝜃

𝑑𝐹 + 𝑝(1 − 𝜌(𝜃))𝜌(1/𝛽)
∫ 𝜃

𝛽𝜃

𝑑𝐹

]+
=

[
(1 + 𝑝(𝜌(1/𝛽) − 1)) (1 − 𝜌(𝜃))

∫ 𝜃

𝛽𝜃

𝑑𝐹

]+
.

The thesis follows by taking the supremum over 𝜃 ∈ Θ, applying Lemma 120, and substi-

tuting 𝜌(1/𝛽) = 2𝑐. □
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Recall that we let 𝑚𝑚∗(𝑐) be the maximum mistreatment achieved by the optimal pol-

icy from Theorem 23 with the amount of resources being 𝑐. We have

𝑚𝑚∗(𝑐) =


(1 − 𝑝 − 𝑐) (1 − 𝛽𝛼) + 𝑐𝑝 if 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)

1−𝑝+1−𝛽𝛼 ,

(1 − 𝑝) (1 − 𝛽𝛼) 1−𝑐
1−𝑝𝛽𝛼 otherwise.

(B.7)

Lemma 122. Let 𝑝 < min{1 − 𝛽𝛼, 1/2} and 1 − 𝑝+1−𝛽𝛼
4𝑝(1−𝛽𝛼) ≤ 𝑐 ≤ (1−𝑝) (1−𝛽𝛼)

1−𝑝+1−𝛽𝛼 . Then 𝑚𝑚𝜌𝑚 ≤

𝑚𝑚∗(𝑐).

Proof. Let 𝑄 := 𝑚𝑚∗(𝑐) − 𝑚𝑚𝜌𝑚 . We need to show 𝑄 ≥ 0. Using Theorem 23 and

Lemma 121, compute

𝑄 = 𝑚𝑚∗(𝑐) − 𝑚𝑚𝜌𝑚 ≥ (1 − 𝑝) (1 − 𝛽𝛼) − 𝑐(1 − 𝛽𝛼 − 𝑝) − (1 + 𝑝(2𝑐 − 1)) (1 − 𝛽𝛼)𝜉 (𝑐).

For 𝑐 ≤ 1/4, we now have

𝑄 ≥ 𝑐 [(1 − 4𝑝(1 − 𝑐)) (1 − 𝛽𝛼) + 𝑝] . (B.8)

If 𝑝 ≤ 1
4 , then the right-hand side of (B.8) is nonnegative, concluding the proof. Thus,

assume 𝑝 > 1
4 . Since 𝑐 > 0, we can drop the leading 𝑐, so for 𝑄 ≥ 0, we need 𝑝(1 − 4(1 −

𝛽𝛼) (1 − 𝑐)) ≥ −(1 − 𝛽𝛼). Rearranging leads to the thesis. Consider next the case where

𝑐 ≥ 1/4. We want to show

(1 − 𝑝) (1 − 𝛽𝛼) − 𝑐(1 − 𝛽𝛼 − 𝑝) − (1 + 𝑝(2𝑐 − 1)) (1 − 𝛽𝛼) 1
8𝑐

≥ 0.

Since 𝑐 > 0, we can multiply by 𝑐 to get a quadratic in 𝑐; call the resulting expression

𝑊 (𝑐):

𝑊 (𝑐) = 𝑐(1 − 𝑝) (1 − 𝛽𝛼) − 𝑐2(1 − 𝛽𝛼 − 𝑝) − (1 + 𝑝(2𝑐 − 1)) (1 − 𝛽𝛼)1
8
.
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Since 𝑝 < 1 − 𝛽𝛼, 𝑊′′(𝑐) ≤ 0, hence this is a concave quadratic. One can verify that if

𝑝 ≤ 1/2 then𝑊 (1/4) ≥ 0 and𝑊 (1/2) ≥ 0, which means that𝑊 must also be non-negative

for 𝑐 ∈ [1/4, 1/2], as required. □

B.6.4 Increasing-with-Potential RVPs

Proof. Directly from Lemma 116. □

Proof. We claim that there exists 𝛿 > 0 with 𝛿 < 𝜃 (1 − 𝛽) such that on 𝐼 := (𝜃 − 𝛿, 𝜃 + 𝛿),

the following properties hold for all 𝑡 ∈ 𝐼: 𝜌 is continuous and differentiable at 𝑡; 𝜌 is

monotonically decreasing at 𝑡; and 0 < 𝜌(𝑡) ≤ (1 + 𝜌(𝜃))/2. The existence of an interval

that satisfies the first and second properties follows since 𝜌 is continuously differentiable

in some neighborhood of 𝜃 and has strictly negative derivative. The third follows since

𝜌 has a strictly negative derivative at 𝜃, so it must be strictly bounded away from 0 and

1 itself. Then, one can restrict 𝛿 to guarantee the same for 𝑡 close to 𝜃. Note also that

𝐼 ⊂ (𝛽𝜃, 𝜃/𝛽).

Next, fix 𝜀 > 0, then one can construct a distribution 𝑓 that satisfies the following

conditions: 𝑓 is continuous and differentiable everywhere; 𝑓 (𝜃) = 𝜀; 𝑓 (𝑡) = 0 for 𝑡 ∉ 𝐼;

and
∫ 𝜃+𝛿
𝜃

𝑓 (𝑡) 𝑑𝑡 ≥ 1
2 . This can be done for instance by constructing a piece-wise constant

function that satisfies all but the first condition, then smoothing it out with an appropriate

bump function via standard techniques.
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From (B.5) and 𝑝(1 − 𝜌(𝜃)) (1 − 2𝜌(𝜃)) + 𝜌(𝜃) ∈ [0, 1], we compute

𝜇′𝜌 (𝜃) = −𝜌′(𝜃)
(
𝑝

∫ 𝜃/𝛽

𝜃

(1 − 𝜌) 𝑑𝐹 + (1 − 𝑝)
∫ 𝜃

𝛽𝜃

𝑑𝐹 + 𝑝
∫ 𝜃

𝛽𝜃

𝜌 𝑑𝐹

)
− 1
𝛽
𝑝𝜌(𝜃) 𝑓

(
𝜃

𝛽

) (
1 − 𝜌

(
𝜃

𝛽

))
− 𝛽(1 − 𝜌(𝜃)) 𝑓 (𝛽𝜃) (1 − 𝑝(1 − 𝜌(𝛽𝜃)))

− 𝑓 (𝜃) (𝑝(1 − 𝜌(𝜃)) (1 − 2𝜌(𝜃)) + 𝜌(𝜃))

= (−𝜌′(𝜃))
(
𝑝

∫ 𝜃+𝛿

𝜃

(1 − 𝜌) 𝑑𝐹 + (1 − 𝑝)
∫ 𝜃

𝜃−𝛿
𝑑𝐹 + 𝑝

∫ 𝜃

𝜃−𝛿
𝜌 𝑑𝐹

)
− 𝜀(𝑝(1 − 𝜌(𝜃)) (1 − 2𝜌(𝜃)) + 𝜌(𝜃))

≥ (−𝜌′(𝜃))𝑝
∫ 𝜃+𝛿

𝜃

(1 − 𝜌) 𝑑𝐹 − 𝜀 ≥ 1
2
(−𝜌′(𝜃))𝑝(1 − 𝜌(𝜃))

∫ 𝜃+𝛿

𝜃

𝑑𝐹 − 𝜀

≥ 1
4
(−𝜌′(𝜃))𝑝(1 − 𝜌(𝜃)) − 𝜀. (B.9)

Now the first term in (B.9) is strictly positive, and we can freely choose 𝜀 strictly smaller in

magnitude to get 𝜇′𝜌 (𝜃) > 0. Note that although 𝜌 might not be well-behaved everywhere,

it is well behaved on 𝐼, and we can apply Lemma 116 to this point to get that 𝜌 is not

incentive compatible for 𝜃, completing the proof. □

B.7 Impact of model misspecification

In this appendix, we study the robustness of our framework under model misspec-

ification. That is, we investigate the impact of applying our simple model of constant

multiplicative bias when the true process by which bias arises is more complicated. In

particular, we study additive models and models where idiosyncratic randomness exists

within the bias factor or potentials of disadvantaged students. Based on computational

experiments we show that our main takeaway holds, and that applying our results would

lead to little efficiency loss except in the case of very high randomness.

Setup: We generate simulated data with parameters chosen to match those we fit to our

real data. In the language of Section 2.2, all students 𝜃 ∈ Θ have a true potential 𝑍 (𝜃)

sampled i.i.d. from a Pareto(1, 𝛼) distribution with 𝛼 = 9, and we identify students with
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their potential, so we write 𝜃 for their true potential. A proportion 𝑝 = 0.3 of students is

disadvantaged and they appear at a perceived potential 𝑍̂ (𝜃), where 𝑍̂ is some random

variable with 𝑍̂ (𝜃) ≤ 𝜃. We study various models for 𝑍̂ (·).

The central planner has a budget 𝑐 and applies our model with 𝑍̂ (𝜃) = 𝛽𝜃 to choose

an interval1 of disadvantaged students to debias as instructed by Theorem 24. We call

this the theoretical debias interval. Due to randomness within the model, it does not make

sense to measure the maximum mistreatment, so we concentrate solely on the positive

area under the mistreatment curve (PAUC) introduced in Section 2.4.

We then compare the theoretical interval to the optimal empirical interval if the full

bias process were known to the central planner a priori. We compute such an interval

using grid search, which we call the empirical debias interval.

Models: For each model, we let 𝜂 be some fixed parameter. We report results for the

cases where the true bias process takes each of the following forms:

1. 𝑍̂ (𝜃) = 𝜃 − 𝜂, a deterministic additive model;

2. 𝑍̂ (𝜃) = (𝜂 + 𝜀)𝜃 for 𝜀 ∼ Normal(0, .02), minor Gaussian noise in bias factor;

3. 𝑍̂ (𝜃) = (𝜂 + 𝜀)𝜃 for 𝜀 ∼ Uniform(−.05, .05), minor uniform noise in bias factor;

4. 𝑍̂ (𝜃) = 𝜃 − 𝜂 + 𝜀 for 𝜀 ∼ Normal(0, .1), additive, medium Gaussian noise in bias

factor;

5. 𝑍̂ (𝜃) = 𝜂𝜃 + 𝜀 for 𝜀 ∼ Normal(0, .1), medium Gaussian noise in potential;

6. 𝑍̂ (𝜃) = (𝜂 + 𝜀)𝜃 for 𝜀 ∼ Uniform(−.15, .15), medium uniform noise in bias factor;

7. 𝑍̂ (𝜃) = 𝜂𝜃 + 𝜀 for 𝜀 ∼ Uniform(−.3, .3), large uniform noise in potential; and

8. 𝑍̂ (𝜃) = (𝜂 + 𝜀)𝜃 for 𝜀 ∼ Uniform(−.3, .3), large uniform noise in bias factor.

1We assume the central planner cannot observe the true potentials and must therefore debias disad-
vantaged students chosen based on perceived potentials. For the case of uniform multiplicative bias, this
makes no difference, but when the bias process has randomness, this is an important detail.
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The first model in particular is the additive model studied in Section 2.6, and the fourth

model is exactly the statistical discrimination model of [91]. All models except the first

(which is deterministic) can be interpreted as adaptations of a statistical discrimination

model, as they contain the key feature of increased variance of the disadvantaged group.

We choose for each model the fixed parameter 𝜂 in such a way that if the central planner

would apply our theoretical model of constant multiplicative bias, they would fit exactly

𝛽 = 0.88 as the Wasserstein metric minimizing parameter. This yields a set of experiments

that can be readily compared. The best fit for the 𝜂 parameter for each model is shown in

Table B.3.

Model 1 2 3 4 5 6 7 8

Parameter 0.130 0.878 0.876 0.151 0.860 0.857 0.843 0.848

Table B.3: Best-fits for the model parameter 𝜂.

Simulations: We perform experiments with two budgets, 𝑐 = 0.1 and 𝑐 = 0.4, and run

simulations with 1 million students in order to adequately approximate the continuous

market. Many of these models increase the variance of the distribution of disadvantaged

student scores, so the theoretical interval would often debias a significantly smaller pro-

portion of students than allowed by the budget, naturally leading to a lower PAUC re-

duction and making comparison difficult. Because of this phenomenon, we fix the upper

endpoint of the theoretical interval, but choose the lower endpoint such that it fills up the

budget.

Table B.4 and Table B.5 summarize the results for 𝑐 = 0.1 and 𝑐 = 0.4 respectively.

For each model, we report the aggregate mistreatment as measured by the PAUC metric

(introduced in Section 2.4) for three cases: no debiasing, under the empirically optimal

debiasing, and under the theoretically optimal debiasing. We report the reduction in

PAUC given by both debiasing methods as well as their difference.
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Model PAUC PAUC Reduction Difference

No debiasing Empirical Theoretical Empirical Theoretical

1 0.2261 0.1870 0.1870 17.28% 17.28% 0.00%
2 0.2398 0.2009 0.2009 16.21% 16.20% 0.00%
3 0.2406 0.2029 0.2029 15.67% 15.65% 0.01%
4 0.2276 0.1978 0.1980 13.12% 13.00% 0.12%
5 0.2406 0.2105 0.2108 12.50% 12.39% 0.11%
6 0.2395 0.2138 0.2149 10.72% 10.27% 0.45%
7 0.2360 0.2048 0.2057 13.23% 12.82% 0.41%
8 0.2337 0.2033 0.2042 13.03% 12.64% 0.38%

Table B.4: Comparison of PAUC reductions between theoretically and empirically optimal intervals for
𝑐 = 0.1.

Low Budget: In the small budget case (𝑐 = 0.1, see Table B.4), the difference in using

the empirically optimal and the theoretically optimal debiasing intervals is minuscule in

every case. In the case of largest difference in PAUC reduction, the empirical interval is

able to reduce PAUC by 10.72%, whereas the theoretically optimal interval would have

reduced it by 10.27%, a difference of only 0.45%.

Model PAUC PAUC Reduction Difference

No debiasing Empirical Theoretical Empirical Theoretical

1 0.2261 0.0850 0.0850 62.39% 62.38% 0.00%
2 0.2398 0.0994 0.0994 58.56% 58.55% 0.01%
3 0.2406 0.1062 0.1064 55.86% 55.80% 0.06%
4 0.2276 0.1146 0.1194 49.66% 47.54% 2.12%
5 0.2406 0.1254 0.1311 47.87% 45.51% 2.36%
6 0.2395 0.1284 0.1402 46.37% 41.47% 4.90%
7 0.2360 0.1015 0.1202 56.99% 49.08% 7.92%
8 0.2337 0.0991 0.1187 57.62% 49.22% 8.40%

Table B.5: Comparison of PAUC reductions between theoretically and empirically optimal intervals for
𝑐 = 0.4.

High Budget: For the large budget case (𝑐 = 0.4, see Table B.5), the difference is more

pronounced, yet still limited. The difference is negligible for models 1–3. Medium Gaus-

sian noise in either potential or bias factor causes a small difference in PAUC reduction,
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in the order of 2–2.5%. In the case of medium uniform noise in bias factor, the difference

starts being more noticeable at 4.9%, and with the cases of large uniform noise in potential

or bias, the difference goes to 7.92% and 8.4% respectively.

Figure B.2: Difference in disadvantaged student perceived potentials for model 8.

Most Misspecified Case: In the worst case, the absolute difference in PAUC is 0.0196,

meaning that on average, disadvantaged students in the correctly specified model achieve

a ranking of approximately 2 percentage points higher than if the central planner were

to apply the misspecified simpler model. We note that to achieve such a difference, the

model has to be highly misspecified: for example, our model would predict the perceived

potentials of disadvantaged students to have mean 0.99 and standard deviation 0.125,

whereas the correct model in this case has mean 0.95 and standard deviation 0.231. One

can see this difference in Figure B.2, one would clearly observe that the model is not

appropriate.

Additive Case: We finally remark that our simple model has excellent performance un-

der the case that the true model is any of models 1–3. In particular, in the case of the true

model being additive, or the bias factor being slightly idiosyncratic, our model predic-

tions apply virtually unchanged.

We conclude that our results are highly robust to model misspecification.
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B.8 Proof of Theorem 30

To simplify notation, we define the following. Recall 𝐹 ∼Pareto(1, 𝛼) is the distribu-

tion of true potentials of all students, and let 𝜙 be a bias map that gives the perceived

potential of a disadvantaged student given their true potential. 𝜙 therefore encodes in-

formation both about the nature of bias, as well as any debiasing steps taken. In this

case we consider an additive bias model where we debias an interval 𝑆 = [𝑌1, 𝑌2], so that

𝜙(𝑥) = 𝑥 if 𝑥 ∈ 𝑆 and 𝜙(𝑥) = 𝑥 − 𝛾 otherwise. Let 𝐻 ∼ 𝜙(𝐹) be the distribution of perceived

potentials of disadvantaged students, and then note that (1 − 𝑝)𝐹 + 𝑝𝐻 is the distribu-

tion of perceived potentials of all students in aggregate in the presence of bias and any

debiasing. In the fair matching (where 𝜙 is the identity map), a disadvantaged student is

matched to school with rank 𝜇(𝑥) = P (𝐹 ≥ 𝑥), and in the ranking with bias and debiasing

of 𝑆, they are matched to 𝜇𝜙 (𝑥) = P ((1 − 𝑝)𝐹 + 𝑝𝐻 ≥ 𝜙(𝑥)). We therefore have under 𝑆 the

displacement

disp𝑆 (𝑥) = 𝜇𝜙 (𝑥) − 𝜇(𝑥)

= 1 − P ((1 − 𝑝)𝐹 + 𝑝𝐻 ≤ 𝜙(𝑥)) − (1 − P (𝐹 ≤ 𝑥))

= P (𝐹 ≤ 𝑥) − [𝑝P (𝜙(𝐹) ≤ 𝜙(𝑥)) + (1 − 𝑝)P (𝐹 ≤ 𝜙(𝑥))]

=


𝑝 [P (𝐹 ≤ 𝑥) − P (𝜙(𝐹) ≤ 𝑥)] , 𝑥 ∈ 𝑆,

P (𝐹 ≤ 𝑥) − [𝑝P (𝜙(𝐹) ≤ 𝑥 − 𝛾) + (1 − 𝑝)P (𝐹 ≤ 𝑥 − 𝛾)] , 𝑥 ∉ 𝑆.
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By carefully dividing into the cases where 𝑌2 − 𝑌1 < 𝛾 and 𝑌2 − 𝑌1 ≥ 𝛾, one can show

disp𝑆 (𝑥) =


(1 − 𝑝)P (𝐹 ∈ [𝑥 − 𝛾, 𝑥]) , 𝑥 ≤ 𝑌1 or 𝑥 ≥ 𝑌2 + 𝛾,

−𝑝P (𝐹 ∈ [𝑌2,max {𝑥 + 𝛾,𝑌2}]) , 𝑥 ∈ (𝑌1, 𝑌2),

(1 − 𝑝)P (𝐹 ∈ [𝑥 − 𝛾, 𝑥]) + 𝑝P (𝐹 ∈ [max {𝑥 − 𝛾,𝑌1} , 𝑌2]) , 𝑥 ∈ [𝑌2, 𝑌2 + 𝛾),

= (1 − 𝑝)P (𝐹 ∈ [𝑥 − 𝛾, 𝑥]) 1{𝑥∉𝑆} +


−𝑝P (𝐹 ∈ [𝑌2,max {𝑥 + 𝛾,𝑌2}]) , 𝑥 ∈ (𝑌1, 𝑌2),

𝑝P (𝐹 ∈ [max {𝑥 − 𝛾,𝑌1} , 𝑌2]) , 𝑥 ∈ [𝑌2, 𝑌2 + 𝛾).

(B.10)

We are now ready to complete the proof.

Proof. Let 𝑆 = [𝑌1, 𝑌2] be some interval to debias, then (B.10) implies:

1. 𝑚∅ (𝑥) = 𝑚𝑆 (𝑥) for 𝑥 ∉ (𝑌1, 𝑌2 + 𝛾),

2. 𝑚𝑆 (𝑥) = 0 for 𝑥 ∈ (𝑌1, 𝑌2),

3. 𝑚𝑆 (𝑥) ≥ 𝑚∅ (𝑥) for 𝑥 ∈ [𝑌2, 𝑌2 + 𝛾), and

4. 𝑚𝑆 (𝑥) is decreasing for 𝑥 ≥ max {1 + 𝛾,𝑌2}.

Further, if 1 + 𝛾 ∉ 𝑆 then max𝑥 𝑚𝑆 (𝑥) ≥ max𝑥 𝑚∅ (𝑥). To see this, suppose 𝑌1 > 1 + 𝛾, then

the result follows because max𝑥 𝑚∅ (𝑥) = 𝑚∅ (1 + 𝛾). Otherwise if 𝑌2 ∈ [1, 1 + 𝛾], we must

have 1 + 𝛾 ∈ [𝑌2, 𝑌2 + 𝛾], so max𝑥 𝑚𝑆 (𝑥) ≥ 𝑚𝑆 (1 + 𝛾) ≥ 𝑚∅ (1 + 𝛾) = max𝑥 𝑚∅ (𝑥).

We therefore know that the optimal 𝑆 ∈ S𝑐 (𝑐) contains 1 + 𝛾 and that it minimizes

max {𝑚𝑆 (𝑌1), 𝑚𝑆 (𝑌2)}. Now write

𝑚𝑆 (𝑌1) = (1 − 𝑝)P (𝐹 ∈ [𝑌1 − 𝛾,𝑌1]) = (1 − 𝑝)P (𝐹 ≤ 𝑌1) ,

𝑚𝑆 (𝑌2) = (1 − 𝑝)P (𝐹 ∈ [𝑌2 − 𝛾,𝑌2]) + 𝑝P (𝐹 ∈ [max {𝑌2 − 𝛾,𝑌1} , 𝑌2]) .
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Recall that P (𝐹 ∈ [𝑌1, 𝑌2]) = 𝑐. We need 𝑚𝑆 (𝑌1) = 𝑚𝑆 (𝑌2), so write

(1 − 𝑝)P (𝐹 ≤ 𝑌1) = (1 − 𝑝)P (𝐹 ∈ [𝑌2 − 𝛾,𝑌2]) + 𝑝P (𝐹 ∈ [max {𝑌2 − 𝛾,𝑌1} , 𝑌2])

⇐⇒ (1 − 𝑝) (1 − 𝑐) = (1 − 𝑝)P (𝐹 ≥ 𝑌2 − 𝛾) + 𝑝P (𝐹 ∈ [max {𝑌2 − 𝛾,𝑌1} , 𝑌2])

= (1 − 𝑝)P (𝐹 ≥ 𝑌2 − 𝛾) + 𝑝(P (𝐹 ≥ max {𝑌2 − 𝛾,𝑌1}) − P (𝐹 ≥ 𝑌2))

= (1 − 𝑝)P (𝐹 ≥ 𝑌2 − 𝛾) + 𝑝(min {P (𝐹 ≥ 𝑌2 − 𝛾) , P (𝐹 ≥ 𝑌1)} − P (𝐹 ≥ 𝑌2))

= min {P (𝐹 ≥ 𝑌2 − 𝛾) − 𝑝P (𝐹 ≥ 𝑌2) , (1 − 𝑝)P (𝐹 ≥ 𝑌2 − 𝛾) + 𝑝𝑐} .

Since both terms inside the minimum are decreasing in 𝑌2, the 𝑌2 that solves this equation

is given by min {𝑈1,𝑈2} where𝑈1 solves (1− 𝑝) (1− 𝑐) = P (𝐹 ≥ 𝑈1 − 𝛾) − 𝑝P (𝐹 ≥ 𝑈1), and

𝑈2 solves (1 − 𝑝) (1 − 𝑐) = (1 − 𝑝)P (𝐹 ≥ 𝑈2 − 𝛾) + 𝑝𝑐. These are exactly the expressions

sought for in the theorem. □
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Appendix C: Additional Details for Chapter 3

C.1 Proofs of some well known results

In this appendix we provide for completeness proofs of some results that are known

in the literature.

Lemma 123. A choice function C is path-independent if and only if it is substitutable and consis-

tent.

Proof. Suppose C is path-independent. We first show substitutability. Let 𝑆 ⊆ 𝑋 , 𝑏 ∈ C(𝑆),

and 𝑇 ⊆ 𝑆. For a contradiction, suppose 𝑏 ∉ C(𝑇 ∪ {𝑏}). Let 𝑄 = 𝑇 ∪ {𝑏} so that 𝑏 ∉ C(𝑄),

then by path-independence, we have that

C(𝑆) = C(𝑄 ∪ (𝑆 \𝑄)) = C(C(𝑄) ∪ (𝑆 \𝑄)).

But now observe that 𝑏 ∉ C(𝑄), and 𝑏 ∉ 𝑆 \ 𝑄, so 𝑏 ∉ C(𝑄) ∪ (𝑆 \ 𝑄) and 𝑏 ∉ C(𝑆), a

contradiction.

To show consistency, suppose 𝑇 ⊆ 𝑆 ⊆ 𝑋 with C(𝑆) ⊆ 𝑇 , then we must have

C(𝑆) = C(𝑆 ∪ 𝑇) = C(S(𝑇) ∪ 𝑇) = C(𝑇),

as required.

For the opposite direction, let C be substitutable and consistent, and let 𝑆, 𝑇 ⊆ 𝑋 . We

first apply substitutability to 𝑆′ = 𝑆 ∪ 𝑇 , 𝑇 ′ = 𝑆. We have 𝑇 ′ ⊆ 𝑆′, so therefore

C(𝑆 ∪ 𝑇) ∩ 𝑆 ⊆ C(𝑆).
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Now write

C(𝑆 ∪ 𝑇) = C(𝑆 ∪ 𝑇) ∩ (𝑆 ∪ 𝑇)

= (C(𝑆 ∪ 𝑇) ∩ 𝑆) ∪ (C(𝑆 ∪ 𝑇) ∩ 𝑇)

⊆ C(𝑆) ∪ 𝑇.

Finally, apply the definition of consistency to 𝑆′ = 𝑆∪𝑇 and 𝑇 ′ = C(𝑆) ∪𝑇 . Since C(𝑆∪𝑇) ⊆

C(𝑆) ∪ 𝑇 , therefore it must hold that C(𝑆 ∪ 𝑇) = C(C(𝑆) ∪ 𝑇), as required. □

Lemma 124. Suppose C is quota-filling and substitutable. Then it is consistent.

Proof. Let 𝑆 ⊆ 𝑋 and 𝑇 ⊆ 𝑆 such that C(𝑆) ⊆ 𝑇 . We wish to show C(𝑆) = C(𝑇). By sub-

stitutability we have C(𝑆) ∩ 𝑇 ⊆ C(𝑇) and since C(𝑆) ⊆ 𝑇 , this yields C(𝑆) ⊆ C(𝑇). Since

𝑇 ⊆ 𝑆, we must have |C(𝑇) | ≤ |C(𝑆) | by the quota-filling property, but this immediately

implies that C(𝑆) = C(𝑇), as required. □

Lemma 125. Let X be a finite set with cardinality |X|. Any deterministic communication scheme

that can uniquely identify any element 𝑥 ∈ X must use Θ(log |X|) bits in the worst case, and this

bound is achievable.

Proof. We define a deterministic communication scheme as a function 𝑓 : X → {0, 1}∗

where {0, 1}∗ denotes the set of all binary strings. For the encoding scheme to identify

elements uniquely, we therefore require that 𝑓 is injective, so | 𝑓 (X)| = |X|. Let 𝐿 be the

maximum length of any binary string in 𝑓 (X), then counting the number of binary strings

with size at most 𝐿, we have 2𝐿+1 − 1 ≥ | 𝑓 (X)| = |X|, which directly implies the bound.

The bound can be achieved by enumerating 𝑓 (X) and encoding each element by a fixed

length binary string of length
⌈
log2( |X|)

⌉
. □
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